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The 8th Victor de Mello lecture: role played by viscosity on the 
undrained behaviour of normally consolidated clays
Ian Schumann Marques Martins1# 

1. Professor Victor de Mello as perceived by
the author

Differently from those who have preceded the author 
towards the honourable task of writing the eighth Victor 
de Mello Lecture, he belongs to a subsequent generation, 
the same of his son, his friend Luiz Guilherme de Mello. 
Our fathers were born in the very year of 1926, with a 
difference of a month and a half. For this reason, he thinks 
his way of perceiving Professor Victor F. B. de Mello may 
be different and more distant from those ways posed by the 
previous de Mello lecturers. Such a distance should be taken 
as a measure of the author’s respect and admiration since the 
time he was a student at the Polytechnic School of the Federal 
University of Rio de Janeiro and trainee at the Geotechnical 
Laboratory of COPPE/UFRJ at the end of the seventies. 
The author perceived Professor Victor Froilano Bachmann 
de Mello as a live legend, as a shining and unreachable sun 
of knowledge rising from the horizon…

The author has heard about his critical mind several 
times. In fact, the author has been introduced to his critical 
way of behaving even before meeting him in person. 
This happened when the author read the preface of the 
book Soil Testing for Engineers (Lambe, 1951), in which 
the acknowledgements end with: “To Dr. Victor F. B. de 

Mello, a former member of the soil mechanics staff at the 
Massachusetts Institute of Technology, especial thanks are 
due for his sharp but constructive criticisms based on a 
careful study of the manuscript.” (Lambe, 1951, pp. v-vi).

The practice of criticism is usually taken with 
reservation among Latins. Many times the Latin spirit takes 
criticism as a personal attack. Perhaps, for this reason, 
when practicing criticism, Victor de Mello may often have 
been misunderstood in the country he chose to live in. 
The biographical notes posed by Moreira & Décourt (1989) 
for the de Mello Volume suggest that, as regards Victor de 
Mello, who was born in a family in which education was 
always taken into high account, the practice of criticism used 
to be a natural consequence of the act of thinking, with ideas 
fighting against each other. Criticism as the exercise of ever 
trying to improve what is being criticized. Criticism in the 
very analytical meaning of the word. Criticism addressed 
to opinions and ideas, never to persons.

Perhaps this gift to criticism has even more been 
developed in the soul of the young man who, having left Goa, 
an old Portuguese province on the west coast of India, had 
to triumph by using merit as the main weapon within the 
competitive environment of the Massachusetts Institute of 
Technology (MIT), as Christian & Baecher (2015) suggest. 
If he had not imposed himself, neither would he have become 
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the eventual substitute of Professor Taylor [de Mello, L.G. 
(2021). Personal communication.] nor would he have 
deserved the comment made by Moreira & Décourt (1989) 
in his biographical notes: “Back at MIT his academic past 
had left one mark. It has been heard that Taylor often 
mentioned him as the best student to have gone through the 
department, and that for a couple of decades the challenge 
to the new staff was to hear from the older faculty “how 
de Mello would have handled the problem” (Moreira & 
Décourt, 1989, p. xiii). The Italians would say: “se non è 
vero è bene trovato”, because vestiges of this admiration 
appear at Taylor’s (1955) acknowledgements in his ultimate 
report: “Review of Research on Shearing Strength of Clay”. 
Part of the acknowledgements says: “Especially valuable 
contributions were made by V.F.B. de Mello and R.H.Clough.” 
(Taylor, 1955, p. 2). This happened about 6 years after Victor 
de Mello had left MIT on his way to Brazil, showing that 
Victor and Don Taylor were still connected.

The author, who was also educated within an environment 
in which the practice of criticism was always carried out, deeply 
understood that way of behaving because he apprehended its 
aims. An illustrative example of Victor de Mello’s critical 
attitude appears in the outline of his potential book (de Mello, 
2014), where he presented a list of items which should be 
reviewed. One of these items is, for instance, the void ratio 
(e ) versus vertical effective stress ( 'vσ , log scale) relationship 
in the one-dimensional compression, which, if represented 
by a straight line, leads to the mistake of obtaining a void 
ratio equal to zero (and even negative ones). By the way, 
the author (Martins, 1983; Martins & Lacerda, 1994) also 
discussed such subject.

Despite the author had maintained brief contacts with 
Professor Victor de Mello, usually during conferences and 
meetings’ intervals, he always tried to draw closer to him 
to listen to the soil mechanics stories he witnessed. These 
stories, which were always told in a picturesque way and 
with a special pleasure, were usually “painted” with the 
colours of his vernacular palette.

Marzionna (2014), a close friend and colleague of his son 
Luiz Guilherme at the Polytechnic School of the University 
of São Paulo, managed, in the author’s opinion, to capture by 
the adjectives passionate, unresigned and perfectionist the 
essence of the man who, even being aware that many things 
inside his soul were utopian, knew that dreams, although 
unreachable, have just one purpose in life: to keep everyone 
walking forward. Nevertheless, according to Burland (2008) 
his way of saying that was more poetical: “Choose your love 
and love your choice” (Burland, 2008, p. 116). That was 
what he did throughout his life.

2. Philosophical spirit of this lecture

As regards science, the soul of things is in the 
fundamentals. The birth of any science is in man’s 
creative ability to observe and imagine how things work. 

To make science means to explain how things operate in 
our universe and to establish links between causes and 
effects, thus following the so-called scientific method. 
Several texts have been written about the scientific method, 
but none of them teaches neither how to observe nor how 
to proceed in order to make ideas spring out concerning 
a given phenomenon. Such ideas are “creation blows” 
and nobody knows where they come from … they are the 
“soul of science”.

Costa (2005) quotes the following passage from Lobo 
Carneiro’s study about Galileu’s investigation method: 
“his scientific investigation method consists in a suitable 
combination of experiment with mathematics, a deductive 
logical tool. Considering some experimental facts, a first 
hypothesis or theory is built in order to interpret them. 
Certain conclusions are deductively drawn from that 
theory; then the validity of those conclusions is submitted 
to experiment, which the last word always correspond to. 
The hypothesis should be replaced or improved if the tests 
do not corroborate it. The final verdict is based on the 
truth criterion, which is always given by the experimental 
results.” (Costa, 2005, p. 139).

Philosophically speaking, the first step of that 
method consists in something that cannot be taught: in the 
observation of a phenomenon and of ideas concerning why 
and how that phenomenon occurs. (Where do the ideas 
come from and how do they spring into our thoughts?) 
That is a mystery, which is in the birth of all sciences. 
The idea becomes a working hypothesis regardless of 
how it has appeared. By means of sequential reasoning 
or deductive logic, that working hypothesis leads to 
forecasts regarding the studied phenomenon. If forecasts 
are confirmed by means of tests whose results are repeated, 
then the hypothesis becomes a principle, a postulate, an 
axiom or a law. So to speak, theories that allow predicting 
phenomena concerning that science are developed based 
on those laws. Therefore, every science is supported by a 
principle or a set of principles. The word principle is used 
because it means the beginning of things. As regards soil 
mechanics, it is not different; it is built upon the Principle 
of Effective Stress (Terzaghi, 1936).

Being a postulate, a principle cannot be demonstrated. 
After being accepted as a truth, it is strengthened every 
time its validity is checked by an experimental result. 
However, despite a principle may many times have its 
validity confirmed, the repeatability of experimental 
results indicating the principle’s validity does not turn such 
repeatability into proof. On the contrary, just one example 
that does not follow a principle (called a counterexample) 
is enough to show the validity of that principle is restricted.

Irrespective of a principle having a chance of being 
of restricted validity (a common thing in science), “to make 
science” follows no other path than that of the idea that 
evolves into a working hypothesis, which, after confirming 
experimental results, reaches the status of a principle. 
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Understanding, examining, reexamining and pondering about 
what a principle establishes is also a role of science. For this 
reason, it is necessary to deeply understand the statements 
of the established principles to correctly apply them but also 
to adequately check their validity.

If the process of managing to have an idea cannot be 
taught, perhaps to exercise thinking may be a way of opening 
the doors of mind to let the ideas come in. [Saramago, R.P. 
(2021). Personal communication.] reminded that Lobo 
Carneiro, the creator of the “Brazilian Test” (used to measure 
tensile strength of concrete), of whom the author is also 
proud of having been a pupil, used to say that, before writing 
any mathematical equation to describe a phenomenon, “it is 
necessary to conceive a mental model explaining how and 
why the phenomenon occurs, no matter how rudimentary 
the model can be”. Another important task is to identify the 
variables on which the studied phenomenon depends and to 
identify any other already known phenomenon with which 
an analogy may be established, a parallel may be drawn. We 
must think about the subject and let ideas flow. [Santa Maria, 
P.E.L.(2000). Personal communication.] posed to the author 
the following thought about the matter: “… so that ideas may 
arise from our minds, time is necessary to think about them, 
to appraise them…and thus brain must be “idle” and free 
from daily tasks, otherwise ideas shall take another way…”.

In these modern times, when lack of time predominates, 
the profusion of published papers leads to the reflection that 
much more time has been spent in writing rather than in 
thinking about things that would be worth writing. In short: 
producing papers has become more important than producing 
knowledge. One of the reasons for that can be found in a 
statement made by Lambe (1981) when he referred to one 
aspect of the geotechnical engineering history of MIT: 
“One outstanding paper can contribute far more than five 
mediocre papers; unfortunately five mediocre papers can 
carry more weight in the [university] promotion process than 
one outstanding paper.” (Lambe, 1981, p. 56).

Similarly, de Mello’s thought “We professionals beg less 
rapid novelties, more renewed reviewing of what is already 
there” also seems to express his concern about the rapid and 
abundant way by which most new papers have been written, 
without taking into consideration a deeper analysis of the subjects. 
Since Taylor was the sole soil mechanics professor at MIT 
from the mid thirties up to 1945 (Christian & Baecher, 2015), 
it is not difficult to imagine how much de Mello and Lambe, 
both Taylor’s pupils at that period, have been influenced by 
his careful way of thinking, rethinking and understanding 
the phenomena, mainly as regards the fundamental 
concepts. Christian & Baecher (2015) realized that part of 
the cause for the bad treatment dispensed to Taylor by the 
group led by Terzaghi was related to Taylor’s way of being. 
The following quotation illustrates this point of view: 
“Neither MIT nor his Professional colleagues treated Taylor well. 
The reasons are hard to grasp at this remove, but part of the 
problem seems to be that he often worked on problems that 

were supposed to have already been solved and he discovered 
previously unappreciated complexities. He was a careful and 
thorough experimentalist, a strength that lay behind many 
of his successes. He had actually looked at the data and 
understood mechanics.” (Christian & Baecher, 2015, p. 16).

The author heard from Professor Victor F. B. de Mello 
that “Fundamentals of Soil Mechanics” could be considered 
one of the five major books ever written about soil mechanics. 
The author also shares this opinion. Christian & Baecher 
(2015) still went further and added: “Fundamentals of Soil 
Mechanics remains today a seminal text on soil mechanics 
and influenced generations of geotechnical engineers. 
In many ways, it is as contemporary as texts written fifty 
years later, and it may be as influential to the modern field 
of soil Mechanics as the books of Terzaghi. The presentation 
is clear and reflects careful thought.”.

Again, the author not only agrees with the above mentioned 
comments but also intends to show the ideas presented herein 
came from Terzaghi (1936) and Terzaghi & Frölich (1936). 
Those ideas grew up with the special care Taylor (1942, 1948) 
used to carry out research: observing phenomena, creating a 
mechanism to explain them, translating them into a mathematical 
language, solving the equations assumed as representative of 
the phenomena and comparing their results to the experimental 
data obtained. Just the same path followed by Galileu.

As the name suggests, “Fundamentals of Soil Mechanics” 
was written with a focus on fundamentals. The author learned 
from Carneiro & Battista (1975) and studying Taylor (1948) 
that the soul of science is in the fundamentals. This lecture 
also concerns fundamentals and was written inspired by de 
Mello’s spirit of thought: “We professionals beg less rapid 
novelties, more renewed reviewing of what is already there” 
(Jamiolkowski, 2012, p. 117) (or pursuant to the author’s 
perception). That is why the number of references is not so 
large. After all, the task of reviewing already settled issues 
in a renewed way requires deeper and more intensive work 
rather than extensive. That is what the author tried to do.

3. The principle of effective stress (PES)

3.1 PES statement and its fundamental equation
Very usually, the PES is only presented by means of its 

fundamental equation. However, as the PES has a status of 
law, besides its fundamental equation, it has a statement that 
is as important as its equation. Instead of presenting the PES 
statement just as it was presented by Terzaghi (1936), the PES 
will be presented split up into two parts, as Atkinson & Bransby 
(1978) did. This statement “version” uses a more up-to-date 
terminology and makes the PES statement easier to be understood.

The first part of the PES statement defines the effective 
stress:

The stresses in any point of a section through a mass of 
soil can be computed from the total principal stresses 

1 2 3,  andσ σ σ  which act at this point. If the voids of the soil 
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are filled with water under a stress u, the total principal 
stresses consist of two parts. One part u acts in the water 
and in the solid in every direction with equal intensity. It is 
called the neutral stress (or the pore pressure). The balance 

1 1 2 2 3 3,    ' ' 'u u and uσ σ σ σ σ σ= − = − = −  represents an 
excess over the neutral stress u and it has its seat exclusively 
in the solid phase of the soil. This fraction of the total 
principal stress will be called the effective principal stress. 
(Atkinson & Bransby, 1978, p. 21).

Hence, the fundamental effective stress equation is given 
by Equation 1.

uσ σ′ = −  (1)

The second part of the PES statement gives the role 
played by effective stresses on the behaviour of soils:

All measurable effects of a change of stress, such as 
compression, distortion and a change of shearing resistance, 
are exclusively due to changes in the effective stresses. 
(Atkinson & Bransby, 1978, p. 21).

3.2 Role played by effective stresses on the behaviour 
of soils

Considering the way the PES was stated, the second 
part only assures that volume change, distortion and a change 
of shearing resistance are effects caused by a change in the 
effective stress state. Nevertheless, rigorously speaking, 
according to the way it was stated, the second part of the 
PES does not ensure that changes in the effective stress state 
necessarily cause volume variation, distortion or change 
of shearing resistance. However, that is the way how soil 
mechanics interprets and uses the PES. Thus, as far as volume 
change and distortion are concerned, the second part of the 
PES might be summarized, without loss of its essence, in the 
following bidirectional mathematical sentence:

change in effective stress ↔ volume change or distortion

The above mathematical sentence is then interpreted 
as follows

→ the “going”

Whenever there is a change in the state of effective stress, 
there will be either a change of volume or distortion (or both).

The connective or in the right side of the PES second 
part sentence makes the sentence true when at least one of 
the two statements (volume change or distortion) is true and 
false only when both are false.

← the “converse”

Whenever there is a change of volume or distortion (it is 
enough that one of them occurs) or both, the change(s) was 
(were) caused by a change in the state of effective stress.

To illustrate the PES meaning according to classical 
soil mechanics, Atkinson & Bransby (1978) state the three 
following corollaries:

Corollary 1: The engineering behaviour of two soils with 
the same structure and mineralogy will be the same if they 
have the same effective stress.

Corollary 2: If a soil is loaded or unloaded without any 
change of volume and without any distortion there will be 
no change of effective stress.

Corollary 3: Soil will expand in volume (and weaken) or 
compress (and strengthen) if the pore pressure alone is 
raised or lowered. (Atkinson & Bransby, 1978, pp. 21-24).

The above-mentioned corollaries are illustrations of how 
the PES is interpreted and used in classical soil mechanics. 
Nevertheless, it is possible to present counterexamples 
which show that these corollaries have no general validity.

As regards corollary 1, one knows that two specimens of the 
same soil subjected to CIU (isotropically consolidated, undrained) 
triaxial tests starting from the same state of effective stress, but 
sheared with different axial strain rates ( )/a ad dtε ε= , show 
different behaviour. This effect was identified a long time ago 
[see, for instance, Taylor (1948)]. Such effect is illustrated in 
Figure 1 by CIU test results carried out by Lacerda (1976) 
on San Francisco Bay Mud samples.

It is possible to present counterexamples which 
show that the second corollary also has no general validity. 
In this case, it is enough to observe what happens during an 
undrained stress relaxation test. As far as this kind of test is 
concerned, the procedure is almost the same followed during 
a conventional CIU triaxial test. The specimen is subjected 
to a constant axial strain rate ( )aε  and led up to a determined 
deviator stress without necessarily being led to failure. Then, 
at a given axial strain, the load frame motor is switched off 
and the specimen behaviour is observed over time. It is the 
so-called stress relaxation test (or stage).

Provided the soil is saturated, there will be no volume 
change in a CIU triaxial test during the shearing phase but 
only distortion. When the load frame motor is switched off, 
there will be no variation of distortion at all. However, even 
with no change in volume and distortion, there is a substantial 
variation of the effective stress state (see Figure 2).

Finally, it is possible to present counterexamples 
showing that the third corollary does not have general validity. 
Suppose that a soil specimen has been isotropically consolidated 
to some stress in the normally consolidated range. If after 
dissipation of the excess pore pressure drainage is closed and 
the total stress is kept constant, it is observed that pore pressure 
increases over time (Figure 3). According to corollary 3, if a 
soil specimen is kept under a constant isotropic state of total 
stress and pore pressure increases over time, the effective 
stress decrease should make the specimen to expand, but this 
cannot occur since drainage is closed.



Martins

Martins, Soil. Rocks, São Paulo, 2023 46(2):e2023006123 5

The counterexamples relating to the three aforementioned 
corollaries serve to raise important issues regarding the PES 
validity. After the advent of critical state soil mechanics, 
a relevant evolution towards theoretical soil mechanics 
approach took place, mainly as regards the introduction of 
plasticity theory concepts. As far as the above-mentioned 
counterexamples are concerned, time and strain rate effects 
are present in all of them. Thus, it is natural the attempt to 
create behavioural models into which concepts that deal 
with such effects may be introduced. Nevertheless, in view 
of the theoretical difficulties to deal with phenomena such 
as creep, stress relaxation and secondary consolidation, 
the usual approach is to preserve the PES essence and 
develop tools to tackle one of these specific phenomena, 
considering each one out of the PES validity domain. A 
typical example of such an approach is the assumption 

/  constantcC Cα =  (Mesri & Godlewski, 1977) to handle 
secondary consolidation.

Computer-aided numerical analyses have made 
sophisticated stress-strain-strength models feasible. However, 
those approaches often become so tricky that the feeling of 
the physical phenomenon sometimes is lost in the midst of 
the mathematical approach.

As the main purpose of this paper is to study the causes 
and effects of strain rate on the undrained behaviour of 
clays, the focus will be on fundamentals. Thus, one will only 
study here saturated isotropic normally consolidated clays, 
without cementation among grains, subjected to undrained 
axi-symmetric stress states, similar to those found in CIU 
triaxial tests.

This paper follows a different approach from those usually 
found. The original PES is extended so that phenomena which 
escape from its validity domain, such as strain rate effects, 
undrained creep and stress relaxation, may naturally result 
from the extended PES version. Concepts that allow such 
PES extension are already presented in classic texts. Many 
of these concepts can be found in Terzaghi & Frölich (1936), 

Figure 1. Example of strain rate effect on consolidated-undrained tests 
[after Lacerda (1976)].

Figure 2. Example of effective stress path (ESP) and total stress 
path (TSP) during stress relaxation [after Lacerda (1976)].

Figure 3. Pore pressure increase after closing drainage after isotropic 
consolidation (Thomasi, 2000).
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Terzaghi (1941), Taylor (1942), Taylor (1948), Hvorslev (1960), 
Bjerrum (1973) and Leroueil et al. (1985), once more 
illustrating de Mello’s thought: “We professionals beg less rapid 
novelties, more renewed reviewing of what is already there.” 
(Jamiolkowski, 2012, p. 117).

3.3 Strain rate effects on the undrained strength of clays – 
a brief discussion

The expression strain rate effects as used in this article means 
the effects of speed of shear as defined by Taylor (1948, p. 377). 
In his own words: “…all plastic materials exhibit a resistance to 
shearing strain that varies with the speed at which the shearing 
strain occurs. The plastic structural resistance to distortion 
in clays, called herein the plastic resistance, is an example.”.

From now on the acronym CIUCL (consolidated 
isotropically undrained compression loading) will be used 
to denote CIU  triaxial tests carried out keeping the radial 
stress rσ  constant and increasing the axial stress aσ . This is 
to say that during the undrained shear stage of a CIUCL test, 

2 3rσ σ σ= =  and 1aσ σ= .
The shear strain rate can be defined by Equation 2

( )/ /a rd dt d dtγ γ ε ε= = −  (2)

where γ  is the distortion ( )a rγ ε ε= −  and aε  and rε  are 
respectively the axial and radial strains. During the shear 
stage of a CIUCL test, 2 3rε ε ε= =  and 1aε ε= , causing 
distortions to occur except for horizontal planes.

When aε  and r are small, volumetric strain ( )vε  can be 
written as 2v a rε ε ε= + . During the shear stage of a CIUCL 
test 0vε =  and a rγ ε ε= − . Therefore, / 2r aε ε= − , 3

2 aγ ε=  
and 3

2 aγ ε=  . Thus, γ can be written as shown in Equation 3.

( ) 3/ / 2a r ad dt d dtγ γ ε ε ε= = − =   (3)

According to Equation 3, the shear strain rate ( )γ  effects on 
CIUCL test results can also be studied by observing axial strain 
rate ( )aε  effects. One of these effects is the dependency of the 
undrained shear strength of clays on the axial strain rate ( )aε .

In this article the undrained shear strength ( )uS  is 
defined by

( )
2

' 'af rf
uS

σ σ−
=   (4)

where 'afσ  and 'rfσ  are respectively the axial and radial effective 
stresses at failure (condition indicated by the use of the subscript f ).

The strain rate effect on the undrained strength of clays 
may be illustrated by the results of a CIUCL test carried out 
in a normally consolidated specimen of Sarapuí II Clay [for a 
detailed description of this clay, see Danziger et al. (2019)]. 
Such a test has been carried out using an intact sample and 
lubricated ends technique so that the specimen could be led 
to a high axial strain, maintaining the cylindrical format. 
Different axial strain rates ( )aε  have been imposed to the 

specimen during the test. Photos of such specimen taken at 
the end of the test ( )17%aε =  are shown in Figure 4.

Figure 5 shows the ( ) / 2  ' 'a r aσ σ ε− ×  plot for the CIUCL 
test carried out on the specimen shown in Figure 4. Initially, the 
specimen was sheared with the strain rate 0.02 % / min.aε =  up 
to 10%aε ≅ , when failure occurred with 68.5 kPauS ≅ . Then, the 
strain rate was increased to 0.2 % / min. causing uS  to increase 
to 76.0 kPa. The strain rate was then reduced to 0.002 % / min. 
obtaining 62.0 kPauS ≅ . Finally, the strain rate was reduced to 
0.0002 % / min., showing 56.5 kPauS ≅ . The deviator stress 
drops observed in Figure 5 are due to the stress relaxation stages 
carried out before the strain rate was changed.

Figure 4. Sarapuí II Clay specimen after a CIUCL test with 
lubricated ends: (a) Inside the triaxial chamber ( )17%aε = ; 
(b) Outside the triaxial chamber with the rubber membrane; 
(c) Without the rubber membrane and with the lateral filter paper; 
(d) Without the filter paper.
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An attempt to estimate the undrained shear strength 
( )uS  as a function of strain rate is given by Equation 5 
[see, for example, Schnaid et al. (2021)].

, 1   u u ref
ref

S S log γµ
γ

 
= + 

  





 (5)

where refγ  is a reference distortion rate, taken as 1%/hour or 
0.017%/min. As in a CIUCL test 3

2 aγ ε=   (see Equation 3), 
Equation 5 can be rewritten as:

, 1  a
u u ref

aref
S S log

ε
µ

ε

 
= + 

  





 (6)

being 2 0.01 % / min. 3aref refε γ= ≅ 

Figure 6 presents uS  values as a function of aε  from 
the test results shown in Figure 5. Using Equation 6 and 

, 66.5 kPau refS = , corresponding to 0.01 % / min. arefε = , a 
0.10µ ≅   is obtained. The fitted curve is also shown in Figure 6.

Figures similar to Figure 6 were firstly presented 
by Taylor (1948, p. 378) and afterwards by several authors 
[as for instance Berre & Bjerrum (1973) and Sheahan et al. (1996)]. 
Although Equations 5 and 6 provide good fitting curves, one can 
observe that, in general, the curve ( )  u aS log scaleε×    shows an 
upward concavity, thereby suggesting that uS  might have a lower 
bound as aε  approaches 0.

The dependence of uS  on aε  leads to the idea of multiple 
state boundary surfaces, each one corresponding to a given 

aε  value. This would mean that for clayey soils the critical 
state line (CSL) is dependent on aε . Therefore, the CSL could 

Figure 5. Strain rate effect on the undrained strength of Sarapuí II Clay.

Figure 6. Values of uS  as a function of aε  for Sarapuí II Clay measured 
in a CIUCL test.

not be considered a clay property. This idea was qualitatively 
presented by Leroueil et al. cited by Jamiolkowski et al. (1991) 
and is reproduced in Figure 7.

As concerns the existence of multiple state boundary 
surfaces, Figure 7 would also indicate the dependence 
of the virgin oedometric compression line on the axial 
strain rate ( )aε . This would be in full accordance with 
the results of Leroueil et al. (1985), showing that in one-
dimensional compression there is a unique relationship 
between effective vertical stress ( )'vσ , vertical strain ( )aε  
and axial (vertical) strain rate ( )aε . The following natural 
question would be what is to happen in this case to the 
coefficient of earth pressure at rest ( )0K . This question, 
raised by Schmertmann (1983) and discussed by several 
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authors (Lacerda, 1977; Kavazanjian Junior & Mitchell, 
1984; Holtz & Jamiolkowski, 1985; Lacerda & Martins, 
1985; Leonards, 1985; Kavazanjian Junior & Mitchell, 1985; 
Mesri & Castro, 1987, 1989), has also remained without a 
final verdict up to now. Nevertheless, this is a discussion 
that is beyond the scope of this paper.

According to Bjerrum (1973), who refers to the strain 
rate effect on the shear strength of clays as “effect of time” 
(the shorter the time to failure, the greater the strain rate), the 
referred effect aroused interest from Terzaghi, who discussed it in 
deep detail in a paper from 1931. According to Bjerrum (1973), 
the mentioned paper would led Hvorslev to include in his 
test program the “effect of time” on shear strength of Little 
Belt plastic remoulded clay.

Henceforth, instead of using the expression 
“effect of time”, it will be used the expression “strain 
rate effects” since it is an expression which better 
translates the mechanics of the phenomenon. According 
to Bjerrum (1973), who was one of the authors that 
have most deeply studied strain rate effects on the shear 

strength of clays, there are many evidences which show 
that strain rate effects are associated with the cohesive 
component of shear strength, as defined by Hvorslev 
(1960). Notwithstanding, as discussed by Schofield (1999, 
2001) and assumed in critical state soil mechanics, soils 
do not possess cohesion in the sense used by Coulomb, 
or rather, they do not resist to effective tensile stresses. 
How can this impasse be solved? After all, what is cohesion? 
Do soils have or do not have cohesion? That is what will 
be discussed in the next section.

4. What is cohesion?

4.1 On the true (Coulomb) cohesion and how the 
materials fail

When I use a word, Humpty Dumpty said in a rather scornful tone, 
it means just what I choose it to mean – neither more nor less.
The question is, said Alice, whether you can make words 
mean so many different things (Lewis Carroll, Through The 
Looking Glass).

This seems to be the case of the word cohesion, which in 
soil mechanics has assumed different meanings, thereby bringing 
about a lot of confusion [see, for instance, Schofield (1999)]. 
In order to discuss this subject, it will be necessary to make a 
brief review of the Mohr failure criterion.

Mohr’s failure criterion, for a given material, can be stated 
as follows: there is a shear stress  expressed as a function 
f  of the normal stress σ  with the following property: if a 
couple ( ),σ τ  which satisfies the function ( )fτ σ=  is acting 
on a plane passing through a point P of the material, then 
there will be failure at that point P along the referred plane.

One of the functions used to express the failure criterion 
in rocks and natural materials is the so-called Mohr-Coulomb 
envelope, gathering Mohr criterion and Coulomb law. 
The Mohr-Coulomb envelope can be written as:

.  ' ' 'ff ffc tanτ σ φ= +  (7)

where ffτ  and 'ffσ  are respectively the shear stress and the 
normal effective stress on the failure plane at failure, φ′ is 
the angle of internal friction and c′ is the cohesion. Plotting 
Equation 7, taking into account just the positive values of 

ffτ , Figure 8 is obtained.
Solid materials such as concrete and rocks have a strength 

which cannot be assigned to any applied stress state which 
can be perceived by human eyes. This kind of strength can 
be described as a consequence of an “imaginary pressure”, 
called “intrinsic pressure” (Taylor, 1948), denoted by '

iσ , 
which remains from the formation of those materials and 
which awards a certain tensile strength to those materials. 
This “intrinsic pressure” corresponds to the segment ′ PO O  in 
Figure 8. This occurs, for example, in the case of an igneous 
rock that, after being formed by magma cooling, presents 

Figure 7. Influence of strain rate ( )aε  on state boundary surface 
[adapted from Leroueil et al. cited by Jamiolkowski et al. (1991)].
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subjected to tensile effective stresses. This type of strength 
can be quantified by segment   ' 'i tanσ φ=OpC , as shown in 
Figure 8. Such strength is denoted by c′ and defined as true 
cohesion or Coulomb cohesion.

An alternative way of writing the envelope in Figure 8 
would be to introduce the “intrinsic pressure”, denoted by 'iσ , 
shifting the origin of the graph in Figure 8 to point O’. Thus,

( )    ' ' ' ' ' 'ff ff i ffc tan tanτ σ φ σ σ φ= + = +  (8)

According to Figure 8, being Op the pole of Mohr circles 
at failure under unconfined compression and simple tension 
tests, the angles of failure planes in compression and in simple 
tension would be 45 / 2φ° + ′  and 45 / 2φ° − ′  respectively 
(see Figure 8). Nevertheless, in a homogeneous and isotropic 
material subjected to a simple tension test, failure planes occur 
orthogonally to the tensile stress direction, as shown in Figure 9. 
It is the failure by separation. So, there are two failure modes: 
by shear and by separation [Carneiro, F.L.L.B.(2021). Private 
communication].

As in the separation failure mode the failure plane is 
orthogonal to the tensile stress direction, the strength envelope 
must necessarily be a vertical tangent to the Mohr circle at 
failure under simple tension at its leftmost point, or rather, 
at the point of abscissae 'tσ , on the left side of the effective 
stresses axis, as shown in Figure 10a. This kind of strength 
envelope is illustrated in Figure 10b for a residual soil. In 
this case, the true cohesion given by c’ in Figure 10b can be 
assigned to grain cementation remaining from the mother 
rock, which have not yet been destroyed by the weathering 
process in its inexorable march of transforming rocks into 
soils. A way of evaluating c’ of a residual soil was used by 
Rodriguez (2005) carrying out a drained Brazilian Test on 
a submerged specimen, as shown in Figure 10c.

One can say that weathering, a process by means of 
which rocks are transformed into residual soils, occurs due 
to loss of true cohesion (grain cementation) existing in the 
mother rock. Concerning the inverse process, called diagenesis, 
in which sedimentary soils suffer a litification process and 
have their grains cemented, there is a gain in true cohesion. 
This process is illustrated in Figure 11. The assumption that 
during weathering/litification the strength envelope suffers 
a displacement keeping the friction angle φ′ constant and 
reducing/increasing the true cohesion is admittedly an 
oversimplification to better explain the phenomenon.

4.2 Hvorslev’s “true cohesion”, cohesive soils, 
plasticity and viscosity

Figure 12 gathers figures from Terzaghi (1938) and 
Gibson (1953), summing up the results obtained by Hvorslev 
(1960) as regards a set of drained direct shear tests carried 
out on saturated remoulded clay specimens.

Figure 9. Failure modes: (a) By separation in a tensile test (see 
the piece of chalk after failure by separation at the right side of 
Figure 9); (b) By shear during an unconfined compression test.

Figure 8. Mohr-Coulomb envelope for soils and rocks.

this type of strength. Similar thing happens in the formation 
of a sedimentary rock, when a cementation agent by means 
of a process called diagenesis gradually links grains of a 
sedimentary soil. A similar phenomenon happens as regards 
concrete, when cement connects the aggregates. Cementation 
makes such materials present a tensile strength ( )'t  when 
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In Figure 12, A0B0C0D0 represents the virgin 
one-dimensional (oedometric) compression line followed 
by a rebound D0E0F0G0H0I0. When the normally consolidated 
specimens represented by A0, B0, C0 and D0 are subjected 
to a drained direct shear test, they decrease in volume 
during shear and fail respectively with the void ratios 
of points A, B, C and D. At the lower part of Figure 12, 
it is shown the strength envelope OABCD, corresponding 
to the normally consolidated condition: a straight line with 
slope  'tanφ  passing through the origin. This means that, under 
the normally consolidated condition, the clay does not have 
true cohesion in the physical sense given by Coulomb, or 
rather, it does not have shear strength under effective stress 
minor than or equal to zero or tensile strength conferred by 
cementation, as discussed in section 4.1.

When testing the specimens represented by D0, E0, F0, G0 
and H0, the last four ones being overconsolidated, the void ratios at 
failure are given by D, E, F, G and H. In the lower part of Figure 12 
it is shown the corresponding overconsolidated strength envelope 
DEFGH. The strength envelope DEFGH depends upon two variables: 
the normal effective stress on the failure plane at failure 'ffσ  (which 
is equal to 'vσ  in a drained direct shear test) and the void ratio at 
failure. However, Hvorslev (1937) observed that a straight line 
strength envelope of equation ( )   ' 'ff e ff ec e tanτ σ φ= +  could be 
drawn provided the specimens had the same void ratio at failure. 
Hvorslev (1937) also noted that the linear coefficient ec  of these 

Figure 11. Weathering/litification as a loss/gain in true cohesion 
of rocks/soils.

straight lines was a function of the void ratio at failure and that 
the slope  'etan  was a constant. One of these straight lines, as 
shown at the lower part of Figure 12, is the line XHB, whose 

ffτ  axis intercept is ( )1ec e , associated with the void ratio 1e  at 
failure. All points of straight line XHB have the same void ratio 
at failure equal to 1e . Another straight line, which represents 
failure of specimens with void ratios at failure equal to 2e , is 
the straight line YFC, whose ffτ  axis intercept is ( )2ec e=OY . 
Thus, it is possible to express the shear strength of a clay as:

( )   ' 'ff e ff ec e tanτ σ φ= +  (9)

Figura 10. (a) Curved strength envelope showing true cohesion c′; (b) Strength envelope of a residual soil showing true cohesion c′ 
[adapted from Rodriguez (2005)]; (c) Sketch of a Brazilian test carried out on a submerged specimen of residual soil.
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In Equation 9, ffτ  is the shear stress on the failure plane 
at failure,   is denominated “effective cohesion” or “true 
cohesion”, a function of the void ratio and soil structure at 
failure, 'ffσ  is the effective normal stress on the failure plane 
at failure, and 'eφ  is called “effective angle of internal friction” 
or “true angle of internal friction”.

If the clay is saturated, e G w= ⋅ , being e the void 
ratio, G the specific gravity and w  the water content. 
As constantG =  for a given soil, there is a one-to-one 
correspondence between void ratio and water content. 
Thus, the parameter ec  can be expressed as a function of 
either the void ratio or the water content, provided that 
both correspond to the failure condition.

In order that Equation 9 can be dimensionally 
homogeneous, ( )ec e  must have the physical dimension 
of a stress. To write ( )c e  expressing it as a stress [see 
Terzaghi (1938)], the equivalent stress 'eσ  has been used. As 
for direct shear tests, 'eσ  is defined as the effective vertical 
stress, taken on the one-dimensional (oedometric) virgin 
compression line (see Figure 13), corresponding to the 
void ratio at failure.

Tests carried out by Hvorslev (1937) on remoulded 
saturated clay specimens showed that ( )ec e  was a linear 
function of the equivalent stress 'eσ  corresponding to the 

Figure 13. Definition of the equivalent stress 'eσ .

void ratio of the specimen at failure. Thus, ( )ec e  can be 
written as:

( )  'e ec e Kσ=  (10)

where K  is a non-dimensional constant.
Then, the shear strength of a saturated clay would be 

given by

.    ' ' 'ff e ff eK tanτ σ σ φ= +  (11)

Dividing both members of Equation 11 by 'eσ , Equation 12 
is obtained

( )/  /   ' ' ' 'ff e ff e eK tanτ σ σ σ φ= +  (12)

According to Terzaghi (1938), if the results of direct 
shear tests are plotted in a ( ) ( )/ /' ' 'ff e ff eσ σ τ σ×   graph, the 
straight line shown in Figure 14 will be obtained.

As previously told, Terzaghi (1938) and Hvorslev (1937, 
1960) called the product ( ) 'e eK c eσ =  as “cohesion”, “true 

Figure 12. Determination of ec  and '
eφ  from drained direct shear tests.

Figure 14. Relationship between normalized shear stress on failure 
plane at failure ( )/ 'ff eτ σ  and effective stress on failure plane at 

failure ( )/' 'ff eσ σ .
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cohesion” or “effective cohesion” and the product   ' 'ff etanσ φ  
as “effective friction component”. Considering what has 
been discussed, the following question arises: if the clays 
studied by Hvorslev were remoulded, there would not be 
cementation among the grains and, therefore, according 
to the true cohesion concept established by Coulomb [see 
Schofield (1999, 2001)], as discussed in section 4.1, none 
of the three terms (cohesion, true cohesion and effective 
cohesion) would be adequate in this case. Then, what would 
be the physical meaning of the term ( )ec e  in Equation 9? 
This is the major discussion posed in this section.

Going ahead on the discussion, all the points on the 
straight line segment HB in Figure 12 have the same void 
ratio 1e  at failure. Therefore, in a   'ff vτ σ×  plot, points H and 
B define a straight line envelope, with slope  'etanφ , for which 
the Hvorslev “true cohesion” is constant and has magnitude 
equal to OX. Then, along the envelope XHB there is only 
variation of the friction component  ' 'v etanσ φ . In a similar 
way, the points on the straight line segment FC in Figure 12 
have void ratio at failure equal to 2e  ( )2 1with e e< . Thus, 
points F and C define another strength envelope, with the 

same slope  'etanφ , but with a Hvorslev “true cohesion” of 
magnitude OY.

Now, it is worth comparing a strength envelope of the 
type obtained by Hvorslev (1937) for an overconsolidated 
clay with the envelope obtained from normally consolidated 
specimens of the same clay. This is presented in Figure 15.

The straight line OAJBCD, at the lower part of 
Figure 15, is the strength envelope corresponding to the 
normally consolidated condition, where the shear stress 
at failure   ' 'ff ff tanτ σ φ= . On the other hand, the same 
strength envelope can be written as ( )   ' 'ff e ff ec e tanτ σ φ= + . 
However, in this case, ( )ec e  varies along the envelope OAJBCD 
because the void ratio also varies. The difference between 
the ordinates of the straight lines OAJBCD and OLN is a 
linear function of 'ffσ  (or 'vσ ), that is:

( )     . ' ' ' ' 'e ff ff e ffc e tan tan Cσ φ σ φ σ= − =   (13)

where C is a constant. This means that the shear strength ffτ  
of a normally consolidated clay can be written as:

( )    

.   

' ' ' 'ff ff e ff e

' ' 'ff ff e

tan c e tan

C tan

τ σ φ σ φ

σ σ φ

= = + =

+  
 (14)

Dividing Equation 14 by 'ffσ , Equation 15 is obtained:

     ' 'etan C tanφ φ= +  (15)

Equation 15 reveals that the friction angle φ′  of a normally 
consolidated clay is “contamined” by a portion C. In other 
words, within the shear strength of a normally consolidated 
clay, which does not have cohesion in the physical sense used 
by Coulomb, there is a portion C which is not due to friction. 
Shearing of a normally consolidated clay produces decrease 
in volume. Being so, C cannot be assigned to the work done 
to dilate the specimen since, being normally consolidated, the 
specimen presents a contractile behaviour. Then, once more, a 
question is asked: which physical phenomenon does the portion 
( )  'e ffc e Cσ=  come from, since it cannot be attributed neither 

to cohesion (cementation), as conceived by Coulomb, nor to 
additional dilating work? After all, what does exist behind the 
“effective cohesion” as inappropriately defined by Hvorslev 
and Terzaghi? This is the discussion that follows.

What the author believes that exists behind Hvorslev’s 
(1937) “effective cohesion” is the “softness” sensation when 
one rubs between the fingers an amount of clay with a water 
content between the liquid limit and the plastic limit. It is also 
the sensation of something “sticky” which is found in clays, 
because of its plasticity. Possibly, owing to such sensation, 
clays have begun to be improperly called “cohesive soils”.

According to the author’s understanding, the expression 
“cohesive soil” leads to plastic soils. As regards soil mechanics, 
plastic soils are those soils that present liquid and plastic 
limits. After all, where does the “sticky” sensation come 
from when a moist clayey soil is rubbed between the fingers? 

Figure 15. Comparison between Hvorslev (1937) strength envelope 
for an overconsolidated clay and Mohr-Coulomb strength envelope 
for the same clay in the normally consolidated condition.
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A mechanistic picture given by Terzaghi (1941) throws some 
light on this question.

According to Terzaghi (1941), clay particles are surrounded 
by an adsorbed water layer. On the clay particles surface, 
adsorbed water is in the solid state and is strongly adhered 
to it. As the distance from the particle surface increases, the 
adsorbed water viscosity decreases. For distances greater than 
a limiting value, viscous water becomes free water. This means 
that in a clay the interactions among grains are influenced by the 
adsorbed water layer that involves them. Since the viscosity of 
the adsorbed water decreases as the distance from the particle 
surface increases, it is expected that in a saturated clay the 
greater the water content (or the void ratio) the smaller the 
relative displacement resistance between neighbouring particles. 
In this case, “true cohesion” or “effective cohesion” to which 
Hvorslev (1937, 1960) and Terzaghi (1938) refer should be 
called viscous resistance, as explicitly written in a passage 
by Terzaghi & Frölich (1936). To avoid loss of fidelity, 
this passage is transcribed below:

“Les résultats des expériences entreprises pour trouver la 
relation entre l’indice des vides et le coefficient de perméabilité 
des argiles, imposaient déjà il y a quelques années, l’hipothése 
que chaque particule d’argile est séparée de l’eau interstitielle 
par une couche séparatrice dont la constitution diffère de 
celle de l’eau ordinaire. L’ épaisseur de cette couche est une 
fraction d’un micron (1/1000 mm).
A l’intérieur de cette couche séparatrice, la viscosité de l’eau 
tombe d’une valeur élevée (surface de la particule solide) à sa 
valeur normale (surface extérieure de la couche séparatrice).
Les avis relatifs aux forces attractives qui provoquent la 
couche séparatrice sont trés partagés.
La Figure 7 représente trois coupes à travers deux particules 
voisines. A l’intérieur de la zone hachurée, la viscosité 
augmente beaucoup à mesure que l’on s’approche de la 
surface solide. Par suite de l’application d’une surcharge, les 
grains sont serrés les uns contre les autres et les couches d’eau 
séparatrices entourant les corpuscules solides s’embrassent 
(fig. 7a). Comme à pression constante, la viscosité de l’eau 
comprise dans la zone hachurée n’augmente au cours du 
temps qu’avec une vitesse décroissante, un rapprochement 
plus poussée des elements solides devient de plus en plus 
difficile et il se passe parfois des années et des dizaines 
d’années avant que les grains ne se touchent (fig. 7b). 
Dans une couche d’argile qui reste pendant des milliers 
d’années sous l’influence de son poids propre constant, ce 
contact devient inévitable. La resistance au glissement des 
particules n’est pas produite uniquement par la résistance de 
frottement mais aussi par la viscosité des couches séparatrices, 
entourant la zone de frottement.
Dans cet état, l’argile doit forcément présenter les propriétés 
élastiques d’un amas des grains dont les pointes de contact 
sont reliés rigidement les uns aux autres.
Aprés le glissement (fig. 7c), les particules sont de nouveau 
séparées par une couche de fluide visqueux. La mobilité 
des particules augmente avec l’ épaissseur de cette couche; 
le coefficient de compressibilité, par contre diminue.” 
(Terzaghi & Frölich, 1936, pp. 18-19).

An adaptation of Figures 7a, 7b and 7c as mentioned by 
Terzaghi & Frölich (1936) in the above quotation is reproduced 
in this article as Figure 16a, 16b and 16c, as follows:

From the passage transcribed above, it seems clear that the 
“cohesion” to which Terzaghi (1938) refers and the “effective 
cohesion”and “true cohesion” referred by Hvorslev (1937, 1960) 
and Gibson (1953) are all of them from viscous nature. 
This seems to be Bjerrum’s (1973) understanding as well. 
As a matter of fact, it is the viscous nature of “cohesion” 
which is behind the Bjerrum’s (1973) correction factor to 
be applied to the undrained shear strength ( )uS  measured in 
the vane test (  measured in a vane test is higher because 
it is obtained with higher shear speed). It is believable that, 
viewing “cohesion” as being of a viscous nature, Bjerrum 
(1973) proposed the correction factor as a function of the 
plasticity index. After all, the more plastic the clay the 
greater its “cohesion” (or viscous resistance). Therefore, the 
higher the plasticity index the higher the influence of viscous 
resistance on the measured undrained shear strength. What 
is not appropriate is the use of the expression “time effect” 
to describe the phenomenon. Although Bjerrum (1973) had 
used the expression “time effect”, it is clear that, according 
to his own understanding, the effect in question can be more 
properly called “strain rate effect”.

In a re-appraisal of his 1937 work, Hvorslev (1960) 
highlights three components of shear strength ffτ  of a 

Figure 16. Action of the adsorbed water layer during the relative 
displacement between two neighbour particles. (a) Clay particles are 
separated by a thin water layer of high viscosity or (b) Clay particles 
are in direct touch. (c) Sliding resistance between clay particles 
is made up of frictionplus viscosity. After relative displacement, 
clay particles can be separated by a water viscous layer again. 
[adapted from Terzaghi & Frölich (1936), p.19].
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“cohesive soil”: the effective friction component ( )φτ , 
the “effective cohesion” component ( )ec  and the dilatancy 
component ( )dτ . Thus,

 ff e dcφτ τ τ= + +  (16)

In a normally consolidated clay, which has a contractile 
behaviour, 0dτ = . The component  is a function of the 
effective stress and is expressed by

  ' 'ff etanφτ σ φ=  (17)

Yet, according to Hvorslev (1960), “cohesive soils” 
(which, due to the confusion created by the term “cohesive”, 
the author prefers to call plastic soils) are those which have 
a strength component ec . Instead of commenting, it is better 
to quote how Hvorslev (1960) viewed the ec  component:

“Most cohesive soils possess an apparent structural viscosity 
and their deformations are of visco-elastic character. The 
corresponding strength component may be called the 
“viscous component”, but factors other than viscosity seem 
to be involved, and the more inclusive term “rheological 
component” and the notation vc  are proposed. It will be 
assumed that vc  forms a part of the effective cohesion 
component,  ec , because the effective friction component, 
φτ , of a remolded clay does not seem to be affected by the 

increased rate of deformation after failure, provided the 
soil structure is not changed;see section 8. However, this 
assumption is in need of further experimental corroboration. 
The value of vc  converges on zero with increasing time or 
decreasing rate of deformation, whereas  ec  at the same 
time approaches an ultimate value, uc , which may be 
called the “ultimate cohesion component.” By definition, 
the following relation exists at any given test duration or 
rate of deformation  e u vc c c= + ”.

Hvorslev (1960) still adds the following passage:

“For the purpose of definition and experimental determination 
of the individual components (individual components of shear 
strength), the basic assumption is made that the cohesion 
and rheological components are constant when (1) the void 
ratio or water content of saturated clays is constant, (2) the 
rate of deformation or test duration is constant, and (3) there 
is no significant difference in the geometric structure of the 
clays during a given test series.” (Hvorslev, 1960, p. 183).

It is worth observing the reference that Hvorslev (1960) 
made to the strain rate influence. Nevertheless, the approach 
given to the subject does not explicitly translate the strain 
rate influence by means of a mathematical expression that 
quantifies the physical phenomenon. This issue has only 
become to be coherently approached by Leroueil et al. (1985), 
showing that, as concerns one-dimensional consolidation, 
there is a unique relationship among the axial (vertical) strain 
( )aε , the effective vertical stress ( )'vσ  and the axial (vertical) 
strain rate ( )aε . However, as far as the author’s knowledge 

is concerned, Taylor (1948) was the first researcher not only 
to physically explain the “effective cohesion” as being of a 
viscous origin but also to physically quantify it by means 
of a mathematical expression.

According to Taylor (1948, pp. 377-378), all viscous 
materials and all plastic materials exhibit a resistance to shearing 
strain that varies with the speed at which the shearing strain occurs 
(see section 3.3). Taylor (1948) called such a kind of resistance 
in clays as “plastic resistance”. Figure 17 shows the dependence 
of the deviator stress at failure ( ) ( )1 3f f af rfσ σ σ σ− = −  on 
the axial strain rate of CIUCL tests. The test results shown in 
Figure 17 were carried out on remoulded specimens of Boston 
Blue Clay with the same water content, but subjected to different 
axial strain rates ( )aε  (corresponding to different speeds of 
shear or different shear strain rates).

Also, according to Taylor (1942), experimental results 
indicated that “plastic resistance” under any speed of shear in 
a given clay with different void ratios is proportional to the 
effective stress. Assuming that “plastic resistance” depends 
on effective stress and shear strain rate, Taylor (1948) wrote 
the following equation for the shear strength ffτ  of a clay:

( ) ( ) /' ' 'ff ff i stan f tτ σ σ φ ε = + + ∂ ∂   (18)

where ffτ  and 'ffσ  are, respectively, the shear stress and the 
effective normal stress on the failure plane at failure, 'iσ  is the 
“intrinsic pressure”, as defined in section 4.1, φ′ is the angle of 
internal friction (to be discussed further again) and ( )/s tε∂ ∂  
is the shear strain rate on the failure plane. The following 
passage quoted from Taylor (1948) summarizes the conception 
of the above-mentioned mechanism. In order to avoid loss of 
fidelity, it is suitable to quote the referred passage:

“The effect of speed of shear on the strength is believed to be 
caused by the viscous or plastic characteristics of material 
in the adsorption zones in the vicinity of points of contact or 
near contact of clay particles. Thus this effect is a colloidal 
phenomenon, and it is of sufficient importance to justify a 
detailed discussion.
The following hypothetical explanation of plastic resistance 
and of time relationships was first presented (Taylor, 1942) 
for one-dimensional compressions, but it may be extended 

Figure 17. Effect of speed of shear on the compressive strength 
of clay (Taylor, 1948).
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to the action of clays in shear. If a drained clay sample is 
maintained under any given system of constant applied direct 
and shearing stresses that do not cause failure, it gradually 
approaches an ultimate shape and an ultimate void ratio 
at which there is static equilibrium. Ages may be required 
to reach this state of equilibrium, but when it is reached 
the applied stresses are equal to static internal resistances 
and they have values that are free of plastic resistance and 
all other time effects. During the approach to equilibrium, 
however, the applied stresses are made up in part of the 
stresses required to overcome the plastic resistance. The 
plastic resistance is usually considered to depend mainly 
on the speed of strain although possibly it depends also on 
such factors as changes in type or degree of adsorption. As 
the clay specimen approaches the static case, the strains 
continuously decrease in speed and the plastic resistance 
decreases in magnitude; however, the speed becomes almost 
imperceptibly small when the plastic resistance is still 
quite large and the strains and the void ratio still have a 
considerable change to undergo before they reach the static case. 
Secondary compression, as it occurs in consolidation tests, is a 
good illustration of this condition. From these concepts it appears 
that a clay that has reached static equilibrium in nature after 
the lapse of many centuries and is suddenly subjected to stress 
increases of relatively small magnitude may be expect immediately 
to exert a plastic resistance that is equal to the stress increase, 
and it is possible that the speed of distortion required for the 
exerting of this amount of plastic resistance may be too small 
to be noticeable. In such a case the plastic resistance cannot be 
distinguished from a bond, and the occurrence of bonds of this 
type is possible both when the shearing stresses are small and 
when they are relatively large.” (Taylor, 1948, pp. 379-380).

From now on the expression “plastic resistance” used 
by Taylor (1948) will be called viscous resistance.

5. A possible additional equation for the 
principle of effective stress (PES)

5.1 The viscosity concept
As the approach of strain rate effects on plastic soils strength 

is concerned, it is usual to make use of the term viscosity without 
defining, however, what is understood by soil viscosity. In soil 
mechanics, the term is generically used without a clear definition 
(Schnaid et al., 2021). The viscosity concept was introduced by 

Newton via Newton’s law of viscosity: The tangential stress 
between neighbouring layers of a fluid in a laminar flow is 
proportional to the ratio /dv dy with which speed v varies in 
the transverse direction of flow y (see Figure 18).

Newton’s law of viscosity is written as:

( )/dv dyτ µ=  (19)

which can be written alternatively as:

0

0

 lim
.

  /  

t

t

dv x
dy y t

x dlim t
y dt

δ

δ

δτ µ µ
δ δ

δ γµ δ µ µγ
δ

→

→

= = =

 
= = 

 
 

 (20)

The coefficient µ  is called coefficient of viscosity or 
simply viscosity and /d dtγ γ=  is called distortion rate. 
Every fluid which obeys Equations 19 or 20 is said to be 
considered a newtonian fluid.

5.2 Shearing of clayey soils – a working hypothesis
The approach presented next is only based on mechanical 

interactions, which greatly simplify the interaction among clay 
particles. However, as argued by Bjerrum (1973), in spite of 
admittedly being an oversimplification, this approach gathers 
the essential characteristics of the behaviour of plastic soils 
as far as strain rate effects are concerned.

According to Terzaghi (1941), clay particles are 
involved by a viscous adsorbed water layer. In the particles 
surface vicinity, adsorbed water is in a solid state and strongly 
adhered to grains surface. As the distance from particles 
surface increases, the adsorbed water viscosity decreases 
until water becomes free water beyond a certain distance 
“d ” (Figure 19). Distance d depends on the physico-chemical 
properties of the minerals of the clay particles and on other 
substances in the adsorption region.

Also, according to Terzaghi (1941), contacts between 
grains can occur through solid water (solid to solid contacts) 
or through viscous water (viscous contacts) and both types 
of contact transmit effective stresses.

Figure 18. Newton’s law of viscosity.
Figure 19. Illustration of adsorbed water and types of contact 
between clay particles (Terzaghi, 1941).
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Starting from the conception of Terzaghi & Frölich 
(1936) to explain clay shear strength and assuming some 
additional hypotheses, Martins (1992) obtained the results 
whose essence is presented as follows.

Considering an imaginary plane P – P passing 
through a plastic soil mass, it will pass by solid to solid 
and viscous contacts (Figure 20). Consider now a region 
of area A (  1  A A u c= × ⋅ , where 1 u c⋅  is a unitary length 
in the normal direction to the plane of Figure 20). Also 
consider that the normal force N and the tangential force 
T are acting on the area A.

Assuming that only solid contacts can transmit effective 
normal stresses, the balance of forces in the normal direction 
of the plane P – P leads to the PES equation, uσ σ= − . 
A more general hypothesis according to which viscous contacts 
can also transmit effective stresses is being developed but 
this approach will not be discussed herein.

The tangential force T  acting on area A divided by  
is by definition the shear stress on the area A along plane 
P – P. Force T  can be expressed by the sum of tangential 
forces, which causes the relative displacement between the 
particles from the upper side and the lower side of the plane 
P – P (see Figure 20). According to the mechanism posed by 
Terzaghi & Frölich (1936), force T  consists in summing up 
the friction resistance component sT , which exists in solid 

Figure 20. Forces acting on a plane P – P passing through a plastic soil mass.

contacts, and the viscous resistance component vT , due to 
the distortion of the adsorbed water.

Suppose there are m  solid to solid contacts within the 
area A in Figure 20. The friction force siT  acts at the solid to 
solid contact of order i as a local reaction to the applied force T . 
Therefore, the friction resistance component sT  mobilized as 
a partial reaction to force T  can be written as:

1 1
    

m m
's si i i ii i

T T P tanξ φ
= =

= =∑ ∑  (21)

where 'iφ  is the friction angle of the solid to solid contact 
of order i and iξ  is the degree or percentage of the friction 
strength mobilized at the solid to solid contact of order i. 
Thus, Equation 21 provides the mobilized friction resistance 
component sT  along the plane P – P. It is possible to 
rewrite Equation 21 defining for each solid to solid contact 
of order i, within the area A, a coefficient iξ  such that 

*    ' 'i i i etan tanξ φ ξ φ= , being 'eφ  the Hvorslev’s true angle of 
friction. Thus, Equation 21 can be rewritten as Equation 22:

*
1 1

    
m m

' 'i i i i i ei i
P tan P tanξ φ ξ φ

= =
=∑ ∑  (22)

Finally, denoting by ξ  the average value of all *
iξ  values 

taken over area A, one obtains:

*
1 1

      
m m

' 's e i i e ii i
T tan P tan Pφ ξ ξ φ

= =
= =∑ ∑  (23)
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Suppose now that the total number of contacts within 
area A is n. In all contacts, irrespective of their type, there 
will be viscous resistance. For instance, at the contact 
between the intermediate couple of grains in Figure 20, 
viscous resistance comes from the shear strain rate of the 
adsorbed water element ijkl. Such viscous resistance is also 
present in the solid to solid contacts. This is illustrated in 
Figure 20 by the shearing strain of the ring shaped element 
whose transversal section is abcd – efgh.

The viscous resistance existing in a viscous contact 
caused by the shear strain rate of an element of section ijkl 
or in a solid to solid contact by the shear strain rate of a ring 
shaped element whose section is abcd – efgh varies along 
the contact. This occurs because the viscosity coefficient 
µ  of the adsorbed water at points within the contact zones 
along the plane P – P depends on the distances from these 
points to the particles surface (see Figure 21).

There is also an extremely important issue concerning the 
behaviour of viscous fluids, as highlighted by Rouse & Howe 
(1953). As presented in Figure 18, the concept of individual 
layers or fluid laminae flowing side by side is merely a 
question of convenience in order to model the phenomenon 
mathematically. Such a model can lead to the false idea that 
in a laminar flow fluid laminae can literally slide one over the 
others producing a kind of mechanical drag measured in terms 

of the viscous resistance τ , as expressed by Equation 19. In 
fact, in a submicroscopic scale, viscous resistance results from 
the interaction of fluid molecules whenever any portion of 
fluid, no matter how small it is, is subjected to shear strains. A 
fundamental feature of a viscous fluid is the fact that a slip along 
a surface between two neighbouring layers of the fluid (inside 
a fluid mass) or between a viscous fluid and a solid contour 
cannot occur because this would result in an infinite value for 
the ratio /dv dy in Equations 19 and 20. Thus, regardless the 
fluid nature, molecular interactions compel to the condition of 
identical velocities along both sides of any fluid surface, real 
or imaginary. For this reason, the velocity of a moving fluid at 
the surface of contact with a solid contour will be exactly the 
same as the velocity of the contour itself. If the contour is at 
rest, the fluid in contact with this contour will also be at rest, 
irrespective of how great its velocity may be a short distance away. 
This means that, during shear, relative displacements between 
soil grains occur without slippage along the surface of contact 
between viscous adsorbed water and solid grains contours. This 
also means that during relative displacements, for instance, 
along the plane P – P in Figure 20, soil grains are subjected 
to drag forces due to shear strain of their viscous adsorbed 
water layers. The resultant of these viscous forces, denoted by 

vT , is the viscous component proposed by Terzaghi & Frölich 
(1936), which, added to the friction resistance component sT , 
gives the internal reaction to the applied tangential force T .

As the viscous resistance is present in all n contacts 
within the area A, irrespective of the type of contacts, vT  
can be written as:

1
 

n
v vjj

T T
=

=∑  (24)

being vjT  the local viscous resistance acting at the contact of 
order j. In its turn, vjT  can be written as:

 j
vj vj

d
T dA

dt
γ

µ= ∫  (25)

Considering the viscosity of the free water as being negligible 
if compared to the viscosity of the adsorbed water, the integral 
in Equation 25 should be taken all over the viscous contact area 

vjA  of contact j (see Figures 20 and 21), along which µ  varies. 
The term /jd dtγ  is the distortion rate of the viscous adsorbed 
water of the contact of order j, along the plane P – P, in 
the direction of the tangential force T . Thus, the viscous 
component vT  acting all over the area A in the direction of 
T can be written as:

1

n j
v vjj

d
T dA

dt
γ

µ
=

= ∫∑  (26)

Taking jµ  as the average value of µ  over the area vjA , 
vjdAµ∫  can be written as j vjAµ . Thus,

1
  

n j
v j vjj

d
T A

dt
γ

µ
=

=∑  (27)

Figure 21. Hypothetical variation of the coefficient of viscosity 
µ of the adsorbed water along the plane P – P within the contact 
zones between clay particles.
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Denoting by µ  the average value of all jµ  values and 
taking into account that the distortion P Pγ −  of a clay along 
the plane P – P in Figure 20 is the result of the gathered 
relative displacements of particles from both sides of plane 
P – P, Equation 27 can be rewritten as:

1
   −

=
= ∑

nP P
v vjj

dT A
dt
γµ  (28)

Summing up the friction resistance component ( )sT  
and the viscous resistance component ( )vT  and dividing by 
the area A, on which the sum ( )s vT T+  acts, Equation 29 is 
obtained, as follows.

11
      −

==+
= = +

∑∑
nm P P' vje i js v i

d Atan PT TT dt
A A A A

γµξ φ  (29)

The left hand side of Equation 29 ( )/T A  is by definition 
the shear stress τ  over area A of the plane P – P, as shown 
in Figure 20. The summation 

1
/

m
ii

P A
=∑  is, by definition, the 

effective normal stress σ ′ acting on the area A of the plane 
P – P. The product   'etanξ φ  in the first part of the right hand 
side of Equation 29 is the mobilized degree ( )ξ  of the friction 
coefficient  'etanφ . Denoting   'etanξ φ  by  'mobtanφ , the first part 
of the right hand side of Equation 29 can be written as:

1
   

  

m
'e is i ' 'mob

tan PT
tan

A Aφ

ξ φ
τ σ φ== = =

∑  (30)

being sT  the mobilized friction resistance, which is a part 
of the internal reaction to the applied horizontal force T  
(see Figure 20). As /T A  is the shear stress τ  acting over 
the area A, the ratio /sT A, denoted by φτ , is the part of the 
shear resistance due to friction mobilized on the area A along 
the plane P – P.

In the second part of the right hand side of Equation 29,  
µ  is a function of the distance between neighbouring particles 
and, therefore, of the void ratio ( )e . However, µ  is also a 
function of the relative position according to which clay 
particles are arranged along the plane P – P, that is to say, a 
function of the structure. Nevertheless, the ratio 

1
 /

n
vjj

A A
=∑  

is an exclusive function of the void ratio. Thus, the product 

1
 /

n
vjj

A Aµ
=

 
 
 ∑  can be rewritten as a function ( )eη , being ( )eη  

a function of the void ratio and the structure. Thereby, the 
second part of the right hand side of Equation 29, denoted 
by ητ , can be rewritten as:

( ) P Pde dtη
γτ η − =  

 
 (31)

being ( )eη  here defined as the viscosity of a plastic soil. 
Thus, the expression for the shear stress ατ  of a plastic soil, 
at any instant, acting on plane P – P whose normal makes 
an angle α  with the principal direction 1σ , being the soil at 
failure or not, can be written as:

( )  ' 'mob
dtan e dt

α
α φα ηα α α

γτ τ τ σ φ η  = + = +  
 

 (32)

If the simplifying assumptions from which Equation 
32 has been derived are accepted as valid, such equation 
will reveal that, at any moment, the shear stress ατ  on a 
plane whose normal makes an angle α  with the direction 
of 1σ  will be internally resisted by the sum of a friction 
component   ' 'mobtanφα α ατ σ φ=  and a viscous component 

( )( )/e d dtηα ατ η γ= .
Equation 32 leads to the following immediate 

consequences:

1. It translates mathematically the mechanism conceived 
by Terzaghi & Frölich (1936) and by Taylor (1948), 
as presented in section 4.4, about clay behaviour in 
shear, where the shear resistance at any instant (and 
not only at failure) is given by the sum of a friction 
component ( )φατ  and a viscous component ( )ηατ .

2. Part of the shear resistance existing in plastic soils 
is of a viscous origin. It is worth observing that the 
viscous component becomes zero when strain rate 
is zero, which does not correspond to the Coulomb’s 
cohesion concept (Schofield, 1999), but corresponds to 
the viscous resistance concept introduced by Newton.

3. The viscous component ( )ηατ  would correspond to the 
“true cohesion” of Hvorslev (1960), an inappropriate name 
(in the author’s opinion), since according to Hvorslev 
(1960) himself it would have a viscous feature (see 
section 4.4) and would be a function of three variables: 
the void ratio, the strain rate and the clay structure. These 
three variables are present in Equation 31.

4. Considering that shear stresses are internally resisted 
by a friction component and a viscous component, 
an additional equation which refers to shear stresses 
can be added to the PES. This suggests that Equation 
18, presented by Taylor (1948), can be generalized, 
holding valid at any instant and not only at failure.

5. Equation 32 is also valid outside the soil mechanics 
domain since, if effective stress 'ασ  is zero, friction 
strength will be zero and the resistance to shearing strain 
will only reside in viscosity, which is a feature of fluids.

6. Finally, Equation 32 explicitly shows the influence 
of strain rate on the shear strength [see for instance 
Taylor (1948), Bjerrum (1973), Berre & Bjerrum 
(1973), Lacerda & Houston (1973), Graham et al. 
(1983), Sheahan et al. (1996), Tatsuoka et al. (2002), 
and Aguiar (2014)] and on consolidation (Taylor, 1942; 
Graham et al., 1983; Leroueil et al., 1985; Andrade, 
2014). As previously discussed, being the “effective 
cohesion” or “true cohesion”, as defined by Terzaghi 
(1938) and Hvorslev (1937, 1960), of a viscous nature, 
it is expected that the greater the plasticity of a soil 
(given by its plasticity index IP) the greater its viscosity 
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( )eη . In the author’s opinion, this might have been 
the main reason for Bjerrum (1973) having expressed 
the influence of strain rate on shear strength of plastic 
soils as a function of the plasticity index (IP).

Last but not least, to avoid the confusion created by the 
inappropriate use of the term “cohesion”, instead of using 
the words “cohesive” and “non-cohesive”, it is suggested 
the use of the words “plastic” and “non-plastic” soils. By a 
plastic soil is to be meant a soil on which one can carry out 
plastic and liquid limit tests.

5.3 Mohr’s circle of strain in a CIUCL test

The state of stress found in a CIUCL test is shown in 
Figure 22a. In this case, 1 aσ σ=  and, due to the axisymmetry, 

3 rθσ σ σ= = . Assuming the soil as isotropic, corresponding 
to the state of stress of Figure 22a, there is an axisymmetrical 
state of strain where 1 aε ε=  and 3 2 r θε ε ε ε= = = . In such 
a case, there will be no shearing strains on horizontal planes.

In a similar way to which has been done for stresses, 
it can be written:

1 3 1 3  2  
2 2l cosα

ε ε ε ε
ε α

+ −
= +  (33)

and

1 3  2
2s sinα

ε ε
ε α

−
=   (34)

where lαε  is the normal linear strain (longitudinal strain) of 
an element of the vertical plane (like EFGH of Figure 22b) 
along the direction which makes an angle α  with the direction 
of  1 aε ε=  (α  being positive when taken in a counterclockwise 
sense) and sαε  the shearing strain (see also Figure 22b).

Figure 23. Mohr’s circle of strain during the undrained shear stage 
of a CIUCL test.

Figure 22. (a) State of stress in a CIUCL test during the undrained shear stage; (b) Corresponding state of strain.
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Similarly to what has been done for stresses, Equations 
33 and 34 can be represented on plane lε  × sε  (Figure 23) 
by a circle of radius ( )1 3 / 2ε ε−  and center of coordinates 
( )1 3 / 2,0ε ε + . It is the Mohr’s circle of strain, shown in 

Figure 23.
In soil mechanics it is usual to take a normal linear strain 

as positive when the element suffers a reduction in length 
(shortening). On the contrary, an elongation is considered 
negative. In the case of the specimen shown in Figure 22, 
the axial strain ( )1 0/a h hε ε δ= = −  is positive (because 

hδ  is negative) and the radial strain ( )3 0/r r rε ε δ= = −  is 
negative (because rδ  is positive).

Being fV  and 0V , respectively, the final and the initial 
specimen volumes, the volumetric strain, denoted by Vε , is 
by definition:

( )0

0

f
V

V V

V
ε

−
=  (35)

In soil mechanics it is usual to consider a compression 
(decrease of volume) as being positive. Thus, in the case 
of a triaxial test specimen (see Figure 22), Vε , defined by 
Equation 35, is accurately given by:

( )

2 2

2 2
0 0 0 0 0 0 0

2 2

2 2 1

V

a r r a r a

h r r h r r h
h r r h r r h
δ δ δ δ δ δ δε

ε ε ε ε ε ε

= − − − − − =

 + + + + 

 (36)

When aε  and rε  are small, Equation 36 can be simplified 
as 2 .V a rε ε ε= +  During the undrained shear of a saturated 

specimen in a CIUCL test, there is no volume change, so 
0Vε = . In this case ( )/ 2r aε ε= −  and the specimen is 

distorted on planes which are not horizontal (see Figure 22b).
Figure 22b shows the section 1234 made by a vertical 

plane that contains the axis of the specimen of Figure 22a. 
Consider now the square region ABCD on the section 1234 
before deformation. Taking 45α = ° in Figure 22b, the square 
ABCD of side l , shown in Figure 24, is deformed into the 
rectangle A’B’C’D’. In a similar way, the square EFGH of 
side 2 / 2l  is deformed into the rhombus E’F’G’H’.

According to Figure 24, 1 1 /a lε ε δ= =  and 

3 3 1/ / 2r l lε ε δ δ= = − = − . Thus, 45lε ° can be evaluated 
as shown in Figure 24.

45

3 31 1
1 31

cos 45 cos 45

2 2
2 2 2 2 2 2

4 22
2

l

l ll

ε

δ δδ δ
ε εδ

°
° − °

= =

− − +
= = =

EE' FF'
EF

 (37)

It should be observed that 1δ  and 3δ  have opposite 
signs because 1δ  is a contraction and 3δ  an elongation. The 
expression for 45lε ° given by Equation 37 can also be obtained 
via Equation 33, that is,

1 3 1 3 1 3
45

31

1 1 1 1

cos 90  
2 2 2

1  
2 2 2 4 4

l

l l
l l l

ε ε ε ε ε ε
ε

δδ
δ δ δ ε

°
+ − +

= + ° = =

−  = − = = 
 

 (38)

The value of 45sε ° can be obtained, via Figure 24, 
taking the transversal component of the relative displacement 
between points E and F, by unit length of the segment 
EF, that is:

( )
45

31 31

1

sin 45 sin 45

2 2
2 2 2 2 32 2  

42
2

s

ll

ε

δδ δδ

ε

°

° − − °
= =

 
− −  + 
  =

′

=

EE' FF

EF

 (39)

The value of Equation 39 can also be obtained using 
45α = °  in Equation 34, that is:

Figure 24. Normal linear strains and shear strains of elements 
ABCD and EFGH.
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31

1 3
45

1 1

1
1

sin 90
2 2

2 3 3
2 4 4

s
l l

l l
l

δδ
ε ε

ε

δ δ
δ

ε

°

 − − −  = ° = =

 − − 
  = =

 (40)

Finally, the distortion, denoted by αγ , is the 
angular change between two fibres of the vertical plane of 
Figure 22b, which were originally at right angles one to 
another and whose normal directions make the angles α  
and ( )2

πα −  with the direction of 1ε  (see Figure 22b). 
Thus, the distortion αγ  can be determined via Equation 34 
as ( )2

s sα α πα
γ ε ε

−
= − , that is,

( ) ( ) ( )
( )

1 3 1 3

1 3

sin 2 sin 2 22 2
sin 2 2 s

α

α

ε ε ε ε πγ α α

ε ε α ε

− −
= − − =

− =

 (41)

The maximum distortion 45γ ° , or simply the distortion γ , is 
the angular change between two fibres of the vertical plane 
of Figure 22b, which were originally at right angles one to 
another and whose normal directions make the angles 45+ ° and 

45− ° with the direction of 1ε  (see Figure 25). This distortion 
γ , during the undrained shear stage of a CIUCL test, can be 
obtained using 45α = ° in Equation 41 to obtain:

45 1 3 1
3
2

γ γ ε ε ε° = = − =  (42)

5.4 The Mohr’s circle, the viscosity ellipse and the 
friction ellipse

Considering Equation 31 and assuming ( )eη  does 
not vary with direction (soil is assumed to be isotropic) and 
also recalling that distortion αγ  is twice the shear strain sαε , 
the viscous component of the shear stress ηατ  along a plane 
whose normal makes an angle α  with the 1σ  or 1ε  direction 
can be written as:

( )( ) ( )( )
( )( )

/ 2 /

2 /  
s

s

e d dt e d dt

e d dt
ηα α α

α

τ η γ η ε

η ε

= = =  (43)

Recalling that ( )1 3 / 2   2s sinαε ε ε α = −  , then

( )( ) ( ) ( )1 32 / /  2se d dt e d dt sinηα ατ η ε η ε ε α = = −   (44)

At a given instant of a triaxial compression test, whether 
it is drained or undrained, provided that accelerations are 
negligible (so that equilibrium equations can be written), 
the state of mobilized viscosity is given by:

1 3 1 3  2
2 2

' ' ' '
' cosα

σ σ σ σ
σ α

+ −
= +  (45)

and

( ) ( )1 3  2
d

e sin
dtηα

ε ε
τ η α

−
=  (46)

Equations 45 and 46 are the parametric equations of 
an ellipse whose centre has coordinates ( )1 3 / 2,0' 'σ σ +  and 
whose major and minor axes are respectively ( )1 3' 'σ σ−  and 

( ) ( )1 32  /e d dtη ε ε− . This ellipse, as shown in Figure 26, 
will be called viscosity ellipse or Taylor’s ellipse, in honour 
of Donald Wood Taylor, since, in fact, all these concepts are 
expressed in several of his writings, though not in detail.

Figure 26. The viscosity ellipse or Taylor’s ellipse.

Figure 25. Definition of distortion 45 452 sγ ε° °= = .
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From now on, the maximum ordinate of the viscosity 
ellipse will be denoted by  and expressed by:

( ) ( ) ( )1 3  
d

e e
dt

ε ε
η η γ

−
= =   (47)

From the above exposed, the friction component of 
the shear stress φατ , acting on the same plane on which the 
viscous portion ηατ  acts, is given by:

( )1 3   2
2

' '
sinφα α ηα

σ σ
τ τ τ α

 −
= − = − 

  
  (48)

Based on Equations 45 and 48, the state of mobilized 
friction is defined. One can observe that Equations 45 and 
48 are the equations of another ellipse whose centre has 
coordinates ( )1 3 / 2,0' 'σ σ +   and whose major and minor 
axes are, respectively, ( )1 3' 'σ σ−  and ( )1 3 2' 'σ σ − −  . This 
ellipse, as shown in Figure 27, will be called friction ellipse 
or Coulomb’s ellipse.

It is noteworthy that the Mohr’s circle of effective 
stresses is the result of summing up the viscosity and 
the friction ellipses. However, the ellipses cannot exist 
separately since equilibrium conditions are only fulfilled by 
the Mohr’s circle of stress. Thus, the shear stress ατ , which 
acts on a plane whose normal makes an angle α  with the 

1σ  direction, consists of two parts: a friction part φατ  and 
a viscous part ηατ .

5.5 A failure criterion for soils taking into account the 
strain rate effect

The ideas herein exposed can be generalized for any 
stress and strain states. Nevertheless, as this text deals 
with fundamentals, only CIUCL triaxial tests on normally 
consolidated specimens will be discussed. In this type of 
test, 1' 'aσ σ= , 3' 'rσ σ= , 1 aε ε=  and 3 rε ε= (see Figure 22a).

When carrying out a CIUCL  triaxial test in a saturated 
soil, since the water compressibility is negligible, the volumetric 
strain vε  is assumed to be zero during the shearing stage. 
Thus, 1 32 0vε ε ε= + = , then 3 1 / 2ε ε= −  or / 2r aε ε= − . So, 

( ) ( )1 3 13 / 2 3 / 2 aε ε ε ε− = = , and the viscous component of 
the shear stress ηατ  corresponds to:

( ) ( ) ( )1 3 3  2   2
2

ad d
e sin e sin

dt dtηα
ε ε ε

τ η α η α
−

= =  (49)

As in the shear stage of a conventional CIUCL test the 
axial strain rate / constant,a ad dtε ε= =   Equation 49 reveals 
that, when a fixed plane is considered, whatever it is, the viscous 
component ηατ  of the shear stress on that plane will remain 
constant during all test (provided that during shear the soil 
structure remains approximately constant, so that ( )eη  will keep 
approximately constant). Thus, according to Equation 49, as 
soon as the load frame motor is switched on with the strain rate 
corresponding to aε , the viscous component will be mobilized 
immediately (with 0aε = ), and remaining constant, for each 
fixed plane, up to the end of shear. Notwithstanding, although 
the viscous resistance will be fully mobilized immediately and 
remaining constant along the whole shear, the deviator stress 
will increase as the specimen strains up to failure. This means 
that during shear the frictional resistance will be mobilized 
as the test takes place, contrarily to the viscous resistance 
mobilization, which occurs instantaneously. The immediate 
consequences of such mechanism are listed as follows:

1. To mobilize the frictional resistance, it is necessary 
to strain the specimen and, as it begins to be strained, 
the deviator stress will begin to increase up to the 
specimen reaches failure. As during the shear stage 
of a CIUCL test there are no volume changes, only 
shear strains occur. Thus, the mobilization of the 
frictional component is intimately related to shear 
strains and, therefore, failure will occur when the 
frictional component is fully mobilized. The conclusion 
is that shear strains and failure are governed by the 
mobilization of the frictional component. In the 
very beginning of shear, there is immediate viscous 
resistance mobilization, whatever the plane may be. 
On a fixed plane, viscous resistance will be acting 
with a value that will be kept constant up to failure 
(provided that aε  and soil structure remain the 
same). As shear strains take place, deviator stress 
will increase due to the mobilization of the frictional 
resistance component. When the frictional resistance 
component is entirely mobilized, failure occurs.

2. As regards specimens with the same void ratio and 
the same structure, the viscous resistance component 
at failure, i.e., the viscous part of the undrained 
shear strength, only depends on the strain rate. 
Thus, the shear strain rate only affects the shear 

Figure 27. The friction ellipse or Coulomb’s ellipse.
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strength value but does not affect strains. This is 
illustrated by the test results shown in Figure 5 
(see also Figure 6). As the field vane test is usually 
carried out with a higher speed of shear than those 
observed in real failures in the field, the results of 
Figures 5 and 6 also explain the need for Bjerrum 
(1973) having proposed the correction factor to be 
applied to undrained shear strength results obtained 
via field vane tests.

3. If failure is commanded by the mobilization of the 
frictional component of the shear strength and if 
the frictional part of the shear stress is given by the 
friction ellipse ordinates, then, if the failure criterion 
established by Hvorslev (1937) holds valid, failure 
must occur whenever the friction ellipse touches the 
strength envelope. Remembering that the approach 
in this article is limited to the normally consolidated 
specimens, the strength envelope to be considered 
is that one which passes through the origin and has 
slope tan 'eφ  (see Figure 28).

Denoting by ffτ  the shear stress on the failure plane 
at failure,

ff ff ffφ ητ τ τ= +
 (50)

where ffφτ  and ffητ  are, respectively, the friction and viscosity 
parts of the shear stress on the failure plane at failure. As 
friction is what commands failure, failure occurs according 
to Mohr-Coulomb-Hvorslev’s envelope, which is the straight 
line that passes through the origin and has slope  'etanφ  (see 

Figure 28). Thus, failure occurs in the maximum obliquity 
plane, taking into account only the frictional part of the shear 
stress, given by:

 'emob '
max

tan φα

α

τ
φ σ

 =  
 

 (51)

Being 'eφ  the limiting angle of maximum obliquity, 
 'etanφ  is the maximum value of  'emobtanφ .

At each moment of a test,  'emobtanφ  can be obtained by 
determining ( )/ '

maxφα ατ σ . This occurs when

0
'
φα

α

τ
σ
α

 
∂  
  =
∂

 (52)

( )

( ) ( )

( )

1 3

1 3 1 3

'

  2
2

 2
2 2

  2
0

 2

' '

'

' ' ' '

'

'

sin

cos

t sin
s t cos

φα

α

σ στ
α

σ
σ σ σ σα α

α

α
α α

  − 
− ∂   

 ∂     = = + −∂ ∂  + 
 

 −∂
= 

∂ +  





 (53)

( ) ( )
( )
( )
( )

' ' ' '

2' '

' ' 2

2' '

2  cos 2  cos 2

cos 2

2  sin  2
0

cos 2

 
∂   − +  = +
∂ +

−
=

+

t s t

s t

t t

s t

φα

α

τ
σ α α
α α

α

α




 (54)

Solving Equation 54, one obtains:

' '' 1 3
' ' '1 3

2
−

= − = −
+

tcos 
s

σ σ
α

σ σ
 (55)

Replacing the result of Equation 55 into Equation 51, 
one finally obtains:

( )
' '1 3

'
'

' ' '2 '21 3

2 

− −  − = =
−

emob
t

tan
s t

σ σ

φ
σ σ

   (56)

where
' ' ' '1 3'

2 2
+ +

= = a rs σ σ σ σ  (57)

and

' ' ' '1 3'
2 2
− −

= = a rt σ σ σ σ
 (58)

Figure 28. Failure criterion for a normally consolidated clay.
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6. CIUCL tests under the light of the concepts 
presented in the previous section

6.1 Introduction and summary of the main points of 
previous section

Although the concepts presented in section 5 can be 
extended to more general cases, the approach herein presented 
is restricted to normally consolidated saturated plastic soils 
subjected to CIUCL tests. Such approach describes and 
considers the effect of strain rate on clays behaviour based 
on a mechanical view, via viscosity. Considering the strain 
rate effect via viscosity greatly simplifies the phenomenon 
of interaction between clay particles. Nevertheless, this kind 
of approach captures the essence of the strain rate effects 
on plastic soils behaviour, making its understanding easier.

The assumptions used in this approach are the following:

1. Soil is seen as a set of grains, each one involved 
by a highly viscous adsorbed water. The closer the 
adsorbed water is to the grain surface, the higher its 
viscosity.

2. Contacts between grains are of two types: solid to 
solid and viscous (Figures 20 and 21).

3. In a plane passing through a “point” of a soil mass 
in equilibrium whose normal makes an angle α  
with the 1σ  direction the effective normal stress 'ασ  
is written as: ' uα ασ σ= − , being ασ  the total normal 
stress and u the pore pressure.

4. Along the tangential direction of the same plane 
described in (3), the shear stress ατ  consists of two 
parts: a frictional part φατ  and a viscous part ηατ , or 
rather α φα ηατ τ τ= + .

5. The viscous part of the shear stress ηατ , given by Equation 
44, is a function of the void ratio, the soil structure and 
the distortion rate γ. The friction part ,φατ  given by 
Equation 48, is a function of the effective stress 'ασ  and 
the mobilized friction angle 'mobαφ  on the plane where 

'ασ  acts, i.e.,    ' 'mobtanφα α ατ σ φ=  (see Equation 32). 
It should be reminded here that there is a difference 
between 'mobαφ  and 'emobφ . For any state of effective 
stress,  'mobtan αφ  is, by definition, the ratio ( )/ 'φα ατ σ  
in a plane given by α , whereas  'emobtanφ  is, for the 
same state of effective stress, given by ( )/ '

maxφα ατ σ  
(see Equation 51). When failure is reached, ' 'emob eφ φ= .

6. The ordered pairs ( ),'α ηασ τ  define the state of 
mobilized viscosity of a soil, which is represented 
by the viscosity ellipse or Taylor’s ellipse. On the 
other hand, the pairs ( ),'α φασ τ  define the state of 
mobilized friction, represented by the friction ellipse 
or Coulomb’s ellipse.

7. The two ellipses cannot exist separately since only 
the stresses given by the Mohr’s circle can fulfill 
equilibrium conditions.

8. In a CIUCL test carried out with constantaε =  and 
assuming that there is no significant change in soil 
structure, ( ) constanteη = . Thus, the viscous part of 
the shear resistance ηατ  is instantaneously mobilized at 
the beginning of the shear stage, remaining constant on 
that fixed plane given by α  throughout the shear stage.

9. Since the deviator stress increases along the shear 
stage as aε  increases, a conclusion to be drawn is 
that such deviator stress increase should be assigned 
to the mobilization of frictional resistance.

10. Failure occurs when frictional resistance is fully 
mobilized. Therefore, failure is ruled by the mobilization 
of the frictional resistance.

11. Failure occurs when ( ) /  ' ' 'emob emax
tan tanφα αφ τ σ φ= = , 

which graphically corresponds to the friction ellipse 
tangency to the strength envelope, whose slope is 

 'etanφ , being 'eφ  the Hvorslev’s true angle of friction.
12. Since there are no volume changes during the shear 

stage of a CIUCL test, there are only shear strains. 
Thus, frictional resistance mobilization is closely 
related to shear strains.

13. The frictional resistance mobilization at any instant 
of the shear stage of a CIUCL test can be quantified 
by ( ) 2 2 /' ' ' 'emobtan t s tφ = − − .

6.2 Ideal CIUCL  tests
During the shear stage of CIUCL tests it is usual 

to plot the deviator stress ( )  ' 'a rσ σ−  × axial strain ( )aε  
and developed pore pressure ( )u∆  × ( )aε . As in the shear 

Figure 29. “Viscosity jump”- instantaneous mobilization of viscous 
resistance in   tt ε′×  and   tu ε∆ ×  plots (Martins, 1992).
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stage of a CIUCL test / 2r aε ε= − , then the shear strain 
( ) ( )45 / 2 3 / 4s a r aε ε ε ε° = − = .

Denoting 45sε ° by tε , the shear stress associated with tε  
is ( )' '

45   / 2a r tτ σ σ° = = ′− . Thus, just as a matter of coherence, 
graphs  tt ε′×  and   tu ε∆ ×  will be plotted. As in CIUCL tests 

( )3 / 4t aε ε= , the use of tε  instead of aε  for abscissa of  tt ε′×  
and   tu ε∆ ×  plots does not alter their shapes.

Figure 29 presents curves  tt ε′×  and   tu ε∆ ×  expected 
for normally consolidated clays in a CIUCL test. This 
figure shows in the  tt ε′×  plot an “initial jump” AB at 0tε = . 
Such “initial jump” or “viscosity jump” corresponds to the 
instantaneous mobilization of the viscous resistance given by 

( ) t eη γ=′ =  . Since the viscous part of the shear resistance 
is a function of the shear strain rate (and not of the shear 
strain), when the load frame motor is turned on, the viscous 
resistance will start to act immediately, when both shear strain 
( )t  and excess pore-pressure ( )u∆  are still zero. Thereafter, 
if the shear stage continues running with the same strain 
rate / 2tε γ=  , this viscous resistance will remain constant 
for the rest of the test.

The “viscosity jump” appears in both s t′× ′ effective 
stress path (from now on called ESP) and s t×  total stress 
path (from now on called TSP), as shown in Figure 30. From 
point B in Figures 29 and 30, friction resistance begins to be 
mobilized gradually, pore pressure begins to increase and the 
specimen begins to undergo shear strains until reaching point 
C, where all the available friction resistance is mobilized. It 
is when failure takes place.

In Figure 30, along the “viscosity jump”, which goes from 
A to B instantaneously, the ESP and TSP are coincident. This 
“viscosity jump” causes the ESPs of normally consolidated 
clays to move to the right afterwards changing their direction 
moving to the left, as shown in Figure 30. It is important 
to note that the frictional resistance mobilized at point B is 
zero and, therefore, at point B there is only mobilization of 
viscous resistance.

This shape of ESPs in CIUCL tests, as shown in Figure 30, 
seems to have been originally presented by Leroueil et al. 
cited by Jamiolkowski et al. (1991) and is reproduced in 
Figure 7. Such a feature suggests that both the critical state 
line (CSL) and the state boundary surface are not unique but 
dependent on the strain rate /t td dtε ε= , or rather one CSL 
and one state boundary surface exist for each tε  value. There 
are several experimental evidences supporting this idea. 
One of them is found in the following passage from Bishop 
& Henkel (1962), which refers to strain rate (although the 
phenomenon has been described as duration of test):

[IV] Duration of Test. The duration of test commonly used 
in the triaxial apparatus and the parameters by which the 
results are expressed are open to criticism on the grounds 
that they take no account of the phenomena of creep in soils 
[for example, Geuze, 1953].
As the criticism is usually based on the results of undrained 
tests, it is necessary to separate the factors involved. The 
application of a shear stress to a saturated sample will result, 
under undrained conditions, in an excess pore pressure. 
Failure conditions in a consolidated-undrained test on a 
normally consolidated clay are represented in Figure 1a (an 
adaptation is presented in Figure 31a of this article) by an 
excess pore pressure u and an effective stress circle tangential 
to a failure envelope defined by the angle φ′, c′ being zero. 
If a sample consolidated under the same conditions is tested 

Figure 30. “Viscosity jump”- instantaneous mobilization of viscous 
resistance in s t′× ′ and s t×  plots (Martins, 1992).

Figure 31. The effect of duration of test on undrained strength 
[adapted from Bishop & Henkel (1962)]: (a) Mohr circles at failure 
for a consolidated-undrained test on a normally consolidated clay; 
(b) Variation in measured strength with time to failure.
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at a much lower rate of testing, it is found that the undrained 
strength ( )1 3σ σ−  is lower and that φ′ has also decreased a 
little (Figure 1b) (an adaptation is presented in Figure 31b of 
this article). The drop in φ′ is negligible for sands but may 
amount in some clays to about 5% decrease in tan φ′ for 
each increase of ×10 in the duration of the test. (Bishop & 
Henkel, 1962, pp. 30-31).

Taking into account that in a normally consolidated clay 
failure conditions ind   icate that CSL is written as  ' 'f fq M p= , 
being 'fq  the deviator stress at failure ( )( )' ' ' ff a rq σ σ= −  and 

'fp  the mean effective stress at failure ( )2 / 3' ' '
f a r fp σ σ= +   , 

with 6  / (3  )' 'M sin sinφ φ= − , it is clear that if  'tanφ  increases 
with aε , M  must also increase with aε , or rather the CSL is 
dependent on the strain rate aε . In this case, the CSL cannot 
be a clay property in the sense of being something intrinsic 
to the clay, a sense used by Burland (1990) for the word 
intrinsic. The same fact holds for Roscoe’s surface, which 
would depend on strain rate. These two aspects are illustrated 
in Figure 7 (Leroueil et al. cited by Jamiolkowski et al., 1991). 
According to Figure 31, strain rate would not affect sands 

since they do not present the viscous effects because they do 
not have plasticity. Evidence that Bjerrum (1973) grasped 
the essence of the phenomenon mechanism as being of a 
viscous nature is the fact that he related its importance and 
magnitude to plasticity (evaluated by the plasticity index IP).

6.3 A set of ideal CIUCL tests
The advantage of working with the mean effective stress 
( )2 / 3' ' 'a rp σ σ= +  and the deviator stress ( )' ' 'a rq σ σ= −  is 

their correspondence to the variables vε  and γ . However, as 
there is a one-to-one correspondence between the ordered 
pairs ( ), p q′ ′  and ( ),s t′ ′ , it will make no difference whether 
one works with the pair ( ), p q′ ′  or with the pair ( ),s t′ ′  to 
draw stress paths. In this article, it has been preferred to 
work with the variables s′and t′, as a matter of convenience.

Now, one will consider the results of three ideal CIUCL 
tests carried out on a normally consolidated clay, under 
isotropic effective stresses 'ep  equal to ,2 and 3' ' 'c c cσ σ σ  . The 
expected  tt ε′×  and   tu ε∆ ×  curves are shown in Figure 32: 
the curves are proportional to 'ep .

The effective stress paths on the  s t′× ′ plane of these tests 
are presented in Figure 33 together with their curves  s e′× . 
The ESPs in the upper part of Figure 33 are homothetic with 
point O being the centre of homothety. Thus, the generated pore 

Figure 32. Curves  tt ε′×  and   tu ε∆ ×  for a set of ideal CIUCL 
tests on a normally consolidated clay.

Figure 33. Paths on the  ′ ′×s t  and  ′×s e  planes followed by ideal 
CIUCL tests carried out on normally consolidated clay specimens 
under a given shear strain rate constanttε = .
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pressures ( )u∆  also form homothetic geometric figures. The 
paths followed on the plane  s e′×  (lower part of Figure 33) 
start on the virgin isotropic compression line (VICL), on the 
floor of the   s t e′× ×′  space, and develop on planes for which 

constant e = . Paths on plane  s e′×  start from points A1, A2 
and A3 and instantaneously move to the right to points B1, B2 
and B3, respectively, forming the viscosity jumps A1B1, A2B2 
and A3B3 . Along the segments A1B1, A2B2 and A3B3 there 
is neither shear strain nor pore pressure generation. From 
points B1, B2 and B3 on, shear strains begin to be developed, 
the frictional resistance begins to be mobilized and there is 
pore pressure generation. Specimens fail when points C1, 
C2 and C3 are reached, on the failure envelope. In the space 

    p q v′× ×′  (where v  is the specific volume, 1v e= + ), points 
C1, C2 and C3 are on a critical state line corresponding to the 
same strain rate tε  used in the three tests.

According to Equation 47, for a given clay and for a 
given point ( ), 'ee p  on the VICL, the “viscosity jump”  
would be proportional to the distortion rate γ. Nevertheless, 
experimental results have been shown that viscous resistance 
is not proportional to γ. Thus, it is more correct to rewrite 

the viscous resistance parameter  as a non-linear function 
f of the distortion rate, or rather

( ) ( ) e fη γ=   (59)

being f an exclusive function of the distortion rate ( )γ  and not 
of the angle α , which indicates the plane considered. Then, 
for e and γ as constants, ( ) ( ) e fη γ=   is also a constant. 
Thus, Equation 46 can be rewritten as:

( ) ( ) ( ) ( )  2    2a rd
e f sin e f sin

dtηα
ε ε

τ η α η γ α
 −

= = 
  

  (60)

Thus, in a test where constantγ = , ( ) constantf γ =  
and, therefore, both the viscosity ellipse, whose half of 
minor axis corresponds to ( ) ( ) e fη γ=  , and the friction 
ellipse remain valid. The only difference is that the viscous 
resistance does not follow Newton’s law of viscosity, or 
rather viscous resistance in plastic soils is non-newtonian. 
Furthermore, Equations 52 to 56 remain valid since derivatives 
are taken respective to angle α  with the aim of determining 

 'emobtanφ . Thus, Equation 56 still holds valid.

Figure 34. Effective stress paths in CIUCL tests and their respective “viscosity jumps” [adapted from Fonseca (2000)].

Figure 35. Effective stress paths in CIUCL tests and their respective “viscosity jumps” [adapted from Lira (1988)].
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Regardless of function type, the viscous resistance 
component   must have the physical dimension of stress. 
Experimental data suggest that for normally consolidated 
clays the “viscosity jump”  is proportional to the isotropic 
consolidation stress 'ep , a feature that had already been 
identified by Taylor (1948, pp. 377-378). Such a feature can 
be observed for two clays in Figures 34 and 35.

Based on these experimental evidences, it can be 
written as

( ) ( ) ( ) '  ee f C pηη γ γ= =   (61)

Thus, viscous resistance , geometrically identified 
by the “viscosity jump”, can be written as a linear function 
of 'ep , whose coefficient Cη  is a non – linear function of the 
distortion rate γ (and also of the soil structure).

The viscosity jumps A1B1, A2B2 and A3B3 in Figures 33 to 35 
do not always appear clearly. The author does not know how to 
explain precisely the reason for that. The author believes that 
some of the possible reasons are the filter paper and porous 
stones adjustments, the non-coaxiality between the piston and 
the specimen axes, the silicone grease when lubricated ends are 
used, etc. Even when the same equipment, the same soil, the 
same specimen preparation and the same test procedures are 
used, sometimes the viscosity jump clearly appears and other 
times it does not. Although this issue will not be discussed 
here, it is a practical aspect that deserves more investigation.

7. A model of behaviour for saturated 
normally consolidated clays taking into 
account strain rate in CIUCL tests

7.1 Normalization of ×′ ′s  t ,  ′× tt ε  and   ∆ × tu ε  curves
This work is supported by experimental evidences and 

basic hypotheses.
The experimental evidences, which are also considered 

as hypotheses, are as follows:

1. Normally consolidated, saturated specimens of a 
given clay consolidated to different isotropic stresses 

'ep  in CIUCL  tests and sheared with the same 
/ 2 constanttε γ= =   show geometrically similar 

curves  tt ε′×  and  ∆ × tu ε . They also show homothetic 
 p q′× ′ and  s t′× ′ effective stress paths with origin as 

the centre of homothety. This is to say: for a fixed 
strain rate tε  the clay exhibit normalized behaviour 
respective to 'ep .

2. For a given strain rate tε , the ordered triples ( ), ,' 'f f fp q v  
with subscripts f denoting failure define a smooth curve 
in the ( , , )' 'p q v  space called the critical state line (CSL) 
associated with that given strain rate tε . For each strain 
rate there is only one corresponding CSL.

3. The projection of a CSL associated with a fixed tε  on 
the planes  p q′× ′ and  s t′× ′ is a straight line passing 
through the origin.

The basic hypotheses are the following:

4. Validity of PES equation: uσ σ′ = − .
5. At any instant the shear stress ατ  acting on plane 

whose normal makes an angle α  with the direction 
of 1σ  consists of two parts: a friction part φατ  and a 
viscous part ηατ , or rather α φα ηατ τ τ= + .

6. The viscous part ηατ  is written as ( ) ( )   2e f sinηατ η γ α=  , 
being ( )eη  defined as the soil viscosity, a function 
of void ratio and structure, and ( )f γ  an exclusive 
function of distortion rate γ. On the plane whose normal 
makes 45º with the direction of 1σ , 2 90α = ° and 

( ) ( )( ) ( ) ( )45 1 3 /  e f d dt e fητ η ε ε η γ° = − = = .
7. The friction part on a plane whose normal makes 

an angle α with the direction of 1σ  corresponds to 
( )1 3 / 2   2' ' sinφα ηατ τ τ σ σ α = − = − −  .

8. The couples ( ),'α ηασ τ  define the state of mobilized 
viscosity of a soil, which is represented by the 
viscosity ellipse. The couples ( ),'α φασ τ  define the 
state of mobilized friction, which is represented by 
the friction ellipse. The sum of these two ellipses 
corresponds to the Mohr’s circle of effective stress 
and, therefore, they cannot exist separately since 
only the stresses given by the Mohr’s circle meet 
equilibrium.

9. As a consequence of hypotheses (5) and (6), during 
the undrained shear stage of a CIUCL test carried out 
with constanttε = , ηατ  is instantaneously mobilized 
and remains constant up to the end of shear. During the 
undrained shear of a CIUCL test there is no volume 
change but only shear strains. Thus, the increase of 
the deviator stress along the undrained shear is due to 
the frictional resistance mobilization, which occurs 
due to the development of shear strains. Therefore, 
the failure process is ruled by the frictional resistance 
mobilization. For a given distortion γ , the frictional 
resistance is fully mobilized and failure occurs. This 
means that, in a normally consolidated clay, failure 
occurs when the friction ellipse touches the strength 
envelope, which is the straight line with slope  'etanφ , 
as illustrated in Figure 28. In other words, failure 
occurs when

( )
1 3

2 21 3

2
  

' 'f f
'f

' 'emob e
' ' ' 'f f f f

t
tan tan

s t

σ σ

φ φ
σ σ

− 
−  − = = =

−

   (62)
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where subscript f indicates failure and 'eφ  is the Hvorslev’s 
“true angle of internal friction”.

10. Finally, another hypothesis concerning viscous resistance 
, which comes from experimental evidences, is that 
 is proportional to isotropic consolidation stress 'ep . 
Thus, ( ) ( ) ( )  'ee f C pηη γ γ= =   (see Equation 61 
and Figures 34 and 35), being ( )Cη γ  a non-linear 
function of distortion rate γ  and of soil structure.

Although this article is limited to normally consolidated 
clays subjected to CIUCL tests, it is possible to extend the 
model presented herein to overconsolidated clays. Part of 
the ten items listed above can be viewed as an extension of 
Terzaghi’s PES and make it possible to consider the influence 
of strain rate on a failure criterion which gathers concepts 
from Newton, Mohr, Coulomb, Terzaghi, Hvorslev, Taylor 
and Bjerrum. Such influence of strain rate occurs by means of 
Newton’s viscosity concept, despite soils viscous resistance 
does not obey Newton’s law of viscosity. In plastic soils 
the viscous resistance to shear comes from the distortion of 
viscous adsorbed water whenever two clay particles in contact 
are moving relative to each other (Terzaghi & Frölich, 1936; 
Terzaghi, 1941; Taylor, 1942; Taylor, 1948). Such viscous 
adsorbed water provides clayey soils with plasticity. It is for 
that reason that Bjerrum (1973) associates strain rate effects 
with plasticity index. Unfortunately, many times the viscous 
component of shear resistance is inadequately called “cohesion”. 
As understood by Coulomb and explained by Schofield (1999, 
2001), cohesion originates from cementation between grains, 
like in rocks and saprolites, providing materials with a tensile 
strength, which is a consequence of true cohesion, as discussed 
in section 4.1. Therefore, cohesion as defined by Coulomb 
has a different physical meaning from the “true cohesion” 
as defined by Hvorslev. Unfortunately, the expression “true 
cohesion” was used by Hvorslev (1937, 1960) and Terzaghi 
(1938) improperly, bringing the conceptual confusion raised 
up by Schofield (1999, 2001). In this article, the strain rate 
effect on the undrained shear strength is evaluated via viscous 
resistance originating from the action of adsorbed water on 
the behaviour of plastic soils.

Back to the geometric similarity in Figure 32 and to 
the homothety of the ESPs in Figure 33, the curves   tt ε′×  
and   tu ε∆ ×  and ESPs  s t′× ′ can be scaled by division by 'ep . 
Thereby, the normalized curves ( )/   ' 'e tt p ε×  and ( )/   'e tu p ε∆ ×  
and the normalized ESPs ( ) ( )/   /' ' ' 'e es p t p×  in Figure 36 are 
obtained, provided the strain rate tε  is the same and kept 
constant for all tests.

The straight line with slope  tanφ′ passing through the 
origin, shown in Figures 15 and 28, is the strength envelope 
for a normally consolidated clay on the   τ σ× ′ plane. According 
to the approach herein developed, such an envelope includes 
two strength components: the frictional component and the 
viscous component. Moreover, as stated in experimental 

evidence (1) of this section, for a fixed strain rate tε , all 
ESPs on the  ′ ′×s t  plane are homothetic with the origin as 
the centre of homothety. However, according to hypothesis 
(9), failure is not determined when the Mohr’s circle of 
effective stresses touches the envelope with slope  tanφ′, 
but when the friction ellipse touches the straight line whose 
slope is ' etanφ , being '

eφ  the Hvorslev’s true angle of internal 
friction, which is a property of the soil. Thus, the question 
to be answered is: how can one explain and conciliate the 
envelope with slope  tanφ′, which gives the real strength of 
the soil, and the envelope whose slope is ' etanφ , by which 
failure is ruled? To answer this question, one must take into 
account the experimental evidences and basic hypotheses 
listed in the beginning of this section as well as the following 
discussion based on Figure 37.

From Figure 37 it immediately follows that points 
D and F lie on the same vertical straight line since ellipse 
AFGB can be obtained from a rotation of Mohr’s circle 

Figure 37. Definition of angles ,  , ' ' 'α β φ  and 'eφ .

Figure 36. Normalized curves ( )/   ' 'e tt p ε×  and ( )/   'e tu p ε∆ ×  
and normalized ESPs ( ) ( )/   /' ' ' 'e es p t p×  for a fixed strain rate tε .
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ADEB around the σ ′ axis of an angle ( ) cos arcθ = CG / CE . 
Moreover, since normalization respective to 'ep  holds valid, 
Figure 37 could be drawn using for abscissas and ordinates 
the normalized parameters /' 'es p  and ' '/ et p , respectively. 
Accordingly, one can go back to Figure 36 and write:

( )/ /   ' ' ' ' 'f e f et p s p tanα=  (63)

Owing to the homothety of tests results carried out with 
constantγ = , one comes to the conclusion that, for a given 

normally consolidated clay, when γ is fixed, the /' 'f es p  and 
/' 'f et p  values will automatically be determined, or rather 

( ) ( )1/' 'f es p f γ=   and ( ) ( )2/' 'f et p f γ=  , being 1f  and 2f  
exclusive functions of γ. Now recalling the hypothesis which 
assumes that shear stress consists of a frictional component 
and a viscous component, one can write that at failure

  ' ' 'f ft s tanβ= +  (64)

Dividing both sides of Equation 64 by 'ep , Equation 65 
is obtained as follows:

( )/ /   /' ' ' ' ' 'f e f e et p s p tan pβ= +  (65)

However, as ( ) ( )1/' 'f es p f γ=  , ( ) ( )2/' 'f et p f γ=   and, 

according to Equation 61, ( )/ 'ep Cη γ=  , Equation 65 can 
be rewritten as

( ) ( ) ( )2 1   f f tan Cηγ γ β γ′= +    (66)

or

( ) ( )
( )

2

1
  

f C
tan

f
ηγ γ

β
γ

′
−

=
 



 (67)

Equation 67 leads to the conclusion that, assuming 
shear resistance consists of a frictional component and a 
viscous component, whenever a given normally consolidated 
clay, sheared with constantγ =  in a CIUCL  test, presents 
homothetic ESPs, friction ellipses at failure will be homothetic, 
or rather they will have the same eccentricity, as shown in 
Figure 38.

When two or more specimens of the same clay are 
normally consolidated to the same isotropic stress in CIUCL 
tests, but sheared with different distortion rates, for instance, 

2 1γ γ>  , the friction angle ( )2φ γ′   will be greater than the 
friction angle ( )1φ γ′   (see Figure 39). In this case, the friction 
ellipse at failure AGHI will present a greater eccentricity 
than that of the friction ellipse at failure ABCD. The Mohr’s 
circle of effective stresses at failure corresponding to the test 
carried out with 2γ  will be larger than that obtained from 
the test carried out with 1γ . However, both friction ellipses 
at failure will be tangent to the friction envelope at points F1 
and F2. This friction envelope, which is unique for a given 
normally consolidated clay, is the straight line passing through 
the origin with slope  'etanφ . Thus, any CIUCL test carried 
out on the same normally consolidated clay, irrespective of 
the distortion rate γ  and irrespective of 'ep , will present at 
failure a friction ellipse which will be tangent to the straight 
line envelope whose slope is  'etanφ .

7.2 Strain rate effects – additional experimental 
evidences

In order to quantify the strain rate in the shear stage 
of a CIUCL test, the variable tε  will be used from now on. 
Recalling that as ( ) / 2t a rε ε ε= −  or ( )/ 2tε γ=  and 
that during the shear stage of a CIUCL test there is no 
volume change, one concludes that ( )3 / 4t aε ε= , which 
entails that ( )3 / 4t aε ε=  .

Lacerda (1976) carried out a set of CIUCL  tests on 
San Francisco Bay Mud samples, applying different strain 
rates in the undrained shear phase, during which stress 

Figure 38. Homothetic (same eccentricity) friction ellipses at failure.

Figure 39. Friction ellipses at failure with different eccentricities, 
both tangent to the same failure envelope of slope 'etan φ , resulting 
from CIUCL tests with different distortion rates γ.
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relaxation stages were accomplished (see Figure 40). Such 
stress relaxation stages consist in turning off the load frame 
motor during the undrained shear phase, for a given time 
interval, monitoring deviator stress and pore pressure over time.

With the load frame motor turned off, tε  becomes zero 
and, therefore, during a stress relaxation stage carried out 
in the undrained shear phase of a CIUCL test, both volume 
and shear strains changes are zero. This kind of test, usually 
called stress relaxation test, would more properly be called 
CIUCL test with stress relaxation stages. Lacerda (1976) 
investigated strain rate effects by turning on the load frame 
motor after the end of the stress relaxation stages at different 
speeds. A typical result of such a test is shown in Figure 40.

The main features observed by Lacerda (1976), common 
to all CIUCL  tests with stress relaxation stages carried out 
with different tε  values on normally consolidated specimens 
from San Francisco Bay Mud, were the following:

a) The size of   tu ε∆ ×  curves is proportional to the 
isotropic stress 'ep  to which the specimen was 
consolidated.

b) For a given isotropic consolidation stress 'ep , the 
curve   tu ε∆ ×  is unique, regardless of the shear strain 
rate tε .

c) Tests with greater tε  values present higher ( )a rσ σ−  
values for the same tε .

d) The pore pressure decrease observed during stress 
relaxation stages are very small if compared to the 
deviator stress decrease.

Features b) and d) allow to assume, as an additional 
hypothesis, that pore pressure does not depend on the shear 
strain rate tε , being only dependent on the shear strain tε  and 
on the isotropic effective stress 'ep  to which the specimen 
was consolidated. The assumption that pore pressure does 

Figure 40. CIUCL test with different strain rates and stress relaxation stages.

Figure 41. Effective stress paths for CIUCL  tests starting out 
from the same 'ep  but corresponding to different strain rates 1tε  
and 2tε  with 1 2t tε ε<  .
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not depend on tε  means that pore pressure will remain 
constant even during a stress relaxation stage, when 0tε = . 
This additional assumption, based on such experimental 
evidences, allows Figure 41 to be drawn.

Figure 41 shows that tests starting from the same isotropic 
effective stress 'ep , but carried out with different tε  values, 
will present, after the viscosity jumps, ESPs which change 
their directions to the left, until they attain envelopes with 
different α′ values. Nevertheless, as previously explained, 
all the states of fully mobilized friction are represented by 
their respective friction ellipses at failure, which are tangent 
to the same friction strength envelope whose slope is  'etanφ  
(see Figure 39).

Taking into account that ( ) 2 2 /' ' ' 'emobtan t s tφ = − − , 
it can be concluded that, at points A1 and A2 in Figure 41, 

 0'emobtanφ = . In a similar way, at points C1 and C2, which 
represent failure,   ' 'emob etan tanφ φ= . Besides, experimental 
evidences indicate that, during CIUCL  tests on two normally 
consolidated specimens of the same clay starting from the 
same 'ep , the following features are observed:

a) Pore pressure u∆  does not depend on the shear strain 
rate tε .

b) Pore pressure u∆  does depend on the strain tε .

Thus, it is expected that points like B1 and B2 in Figure 41 
have the same values of tε , u∆  and 'emobtanφ , irrespective 
of the shear strain rate tε . This working hypothesis, whose 
validity must be checked experimentally, may be presented 
in the complementary principle 1, as stated below:

Complementary principle 1: All CIUCL  tests carried 
out on a given normally consolidated clay compressed to 
the same isotropic effective stress 'ep  will present, for any 
fixed shear strain tε , the same pore pressure ∆u and the 
same 'φemob, provided the points taken from the several 

ESPs (each ESP corresponding to a different tε ) lie on 
the same 45º sloped straight line. In other words: points 
of intersection between a 45º sloped straight line and ESPs 
corresponding to different shear strain rates tε  have the 
same tε , ∆u  and 'φemob (see points B1 and B2 in Figure 41).

It should be added that, in CIUCL  tests carried out 
with the same tε , the curves  tt ε′×  and   tu ε∆ ×  and ESPs 
can be normalized with respect to 'ep . This means that, 
for CIUCL  tests carried out with the same tε , the curves 

/  ' 'e tt p ε× , /    'e tu p ε∆ ×  and the normalized ESPs in the plane 
( )/' 'es p  × ( )/' 'et p  will also be unique. However, if the 
pore pressure during CIUCL  tests is not affected by the 
shear strain rate tε , the curves /   'e tu p ε∆ ×  will be unique, 
irrespective of the tε  value. Thus, Figure 41 can be redrawn 
in the ( )/' 'es p  × ( )/' 'et p  plane and pore pressure can also 
be normalized with respect to 'ep , as shown in Figure 42.

7.3 Strain rate effects – basic curves
In order to generalize the concepts presented in 

section 7.2, two CIUCL  tests carried out on a normally 
consolidated clay will now be considered, both starting 
from the same isotropic effective stress 'ep . In one of these 
tests 0tε ≠  whereas in the other 0tε = . It is obvious that 
a real CIUCL  test cannot be carried out with 0tε = . 
However, assuming valid the complementary principle 
1, the curves  tt ε′×  and   tu ε∆ ×  and the ESP on the  s t′× ′ 
plane, all corresponding to 0tε = , can be obtained from 
the curves  tt ε′×  and   tu ε∆ ×  and the ESP on the  s t′× ′ plane 
achieved from a test carried out with 0tε ≠ . That is what 
will be explained next.

The name basic curves (denoted by the subscript b 
in the parameters 's  and 't  as 'bs  and 'bt ) will be given to all 
curves corresponding to 0tε = . Such basic curves can be 
drawn from the tests carried out with 0tε ≠  subtracting the 
viscous resistance effects.

The main advantage of plotting basic curves is that 
they are free from viscous effects and, therefore, they are not 
dependent on the shear strain rate tε . Thus, such basic curves 
only give the effects of the frictional resistance.

Figure 43 shows the curves  tt ε′×  and   tu ε∆ ×  and the 
ESP on the  s t′× ′ plane for a given 'ep  and a given 0tε ≠ . 
The basic curves   'b tt ε×  and    tu ε∆ ×  and the ESP   ' 'b bt s×  for 
the same 'ep  and 0tε =  are also shown in Figure 43. The 
effective stress path for which 0tε =  will be called basic 
effective stress path and denoted by bESP.

In Figure 43 the curve  tt ε′×  and the ESP of the test 
carried out with 0≠tε  show the initial jump AB corresponding 
to the instantaneous mobilization of the viscous resistance. 
From point B on, the test carried out with 0tε ≠  begins to 
develop shear strains tε  and pore pressures u∆ , with friction 
mobilization, following the curves BYN, until failure is 
reached at point N. The basic curves, corresponding to 

0tε = , do not show the initial jump since for 0tε =  the 

Figure 42. Normalized effective stress paths ( )/' 'es p  × ( )/' 'et p  
for CIUCL  tests corresponding to different strain rates 1tε  and 

2tε  with 1 2t tε ε<  .
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viscous resistance vanishes. Thus, when 0tε = , there is only 
friction mobilization, which occurs as soil is deformed in 
shear along the curves AXM.

Another feature which is worth noting in Figure 43 
is that for a given 'ep  the curve   tu ε∆ ×  is unique since pore 
pressure is assumed to be not dependent on tε . Recalling that 
this is an assumption based on experimental evidences, as 
shown in Figure 40.

The relationship between the coordinates of point Y 
which lies on the ESP associated with a fixed 0tε ≠  and the 
coordinates of point X which lies on the bESP (associated 
with 0)tε = , both points lying on the same 45º sloped straight 
line, can now be derived considering Figure 44.

In Figure 44 the ESP defined by points BYN corresponds 
to the shear stage of a CIUCL test carried out with a fixed 

0tε ≠ . The coordinates of points B, Y and N are ( ) ( )( )' , 's tB B , 
( ) ( )( )' , 's tY Y  and ( ) ( )( )' , 's tN N respectively. On the other 

hand, the bESP, corresponding to a CIUCL test carried out 
with 0=tε , is the curve defined by points A, X and M, whose 
coordinates are, respectively, ( ) ( )( ),' 'b bs tA A , ( ) ( )( ),' 'b bs tX X  
and ( ) ( )( ),' 'b bs tM M . According to the complementary 
principle 1, points Y and X which lie on the same 45º sloped 
straight line have the same values of ' emobtanφ , that is:

( ) ( )

( )( ) ( )( )

( ) ( )

( )( ) ( )( )

2 2

2 2

'
'emob

' '

'b'emob
' 'b b

t
tan

s t
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s t

φ

φ

−
= =

−

=
−
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Y Y
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 (68)

Figure 44. Relationship between coordinates of a point Y on the 
ESP for a fixed 0tε ≠  and coordinates of a corresponding point 
X on the bESP (associated with 0tε = ).

Figure 43. CIUCL  tests carried out with a fixed 'ep  and 0tε ≠  and 0tε =  (basic curves).

Besides,

( ) ( )
( ) ( )

1
' 'b
' 'b

t t
s s

−
=

−

Y X
Y X

 (69)

Particularly, for points A and B,

( ) ( ) 0' 'emob emobtan tanφ φ= =B A  (70)

and for points N and M, corresponding to failure,

( ) ( )' ' 'emob emob etan tan tanφ φ φ= =N M   (71)

From the coordinates of points Y that define the ESP 
of a real CIUCL test carried out with a fixed 0tε ≠ , the 
coordinates of points X that define the bESP can be determined 
(see Figures 44 and 45).
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Solving Equations 68 and 69 for 'bt  and 'bs , Equations 72 
to 75 are obtained:

( )( )2 1  ' ' ' ' 'b emob emobt tan csc s tφ φ= + −  (72)

or
( )
( ) ( )

2
2 2 2 1

' ' '
'b ' ' '

t s tt
s t t

 − + −
= + 

+ −  

  


 (73)

and

( )( )2 1  ' ' ' ' 'b emob emobs sec sin s tφ φ= + −  (74)

or

( ) ( )
( ) ( )

2
2 2 2 1

' ' '
' ' 'b ' ' '

t s ts s t
s t t

 − + −
= − + + 

+ −  

  


 (75)

Conversely, from the coordinates ( ),' 'b bs t  of points X 
of a bESP, one can determine the coordinates ( ),s t′ ′  of the 
corresponding points Y of an ESP of a CIUCL  test whose 
viscous resistance  is known. This can be done by solving 
Equations 68 and 69 for s′ and t′, which gives:

( ) ( ) ( )
2

2 2
' 'b b' ' ' 'b b b' ' ' 'b b b b

s t
s s s t

s t s t
= + + + +

+ +
   (76)

and

( ) ( ) ( )
2

2 2
' 'b b' ' ' 'b b b' ' ' 'b b b b

t t
t s s t

s t s t
= + + + +

+ +
   (77)

In order to check Equations 76 and 77, one can compute 
s′ and t′  for point B in Figure 44, replacing bs′  and bt′  by  
( )bs′ A  and ( )bt′ A , respectively, in Equations 76 and 77. 

Since, for point A, ( )' 'b es p=A  and ( ) 0bt′ =A , one obtains, 
for point B, ( )' 'es p= +B  and ( )t′ =B . It can also be 
observed that, when 0= , bs s′ = ′  and bt t′ = ′.

The discussion above leads to the conclusion that, from 
the results of a CIUCL  test carried out on a specimen of a 

given plastic soil isotropically consolidated to 'ep  and sheared 
with a strain rate tε there is a viscous resistance featured by 
the parameter ( ) 't eC pη ε=  . With a   value obtained from 
a CIUCL test carried out with a given 0tε ≠  and starting 
from an isotropic effective stress 'ep , it is possible to draw 
the corresponding basic curve   'b tt ε×  and the bESP (see 
Figure 43). Thereafter, knowing the function ( )tCη ε  (not 
discussed in this article), one can predict the curve  tt ε′×  and 
the ESP for a CIUCL  test starting out from the same  'ep  but 
carried out with any tε .

7.4 General normalization and basic curves
Consider the ESPs of the four CIUCL tests shown 

in Figure 46. The test carried out with the strain rate 1tε  
starts from point A under the isotropic effective stress 1'ep  
and fails at point D following the ESP ABCD. Another test 
carried out with the same strain rate 1tε  starts from point 
E under the isotropic effective stress 2'ep  and fails at point 
H following the ESP EFGH. A third test carried out with a 
strain rate 2 1t tε ε>   also starts from point E and fails at point 
K following the ESP EIJK. Finally, an imaginary fourth test 
starting from point A is “carried out” with 0tε =  and after 
following the ESP AXM it fails at point M.

According to the complementary principle 1, all points on 
ESPs starting out from the same 'ep , irrespective of the strain 
rate tε  imposed, will show the same shear strain tε , the same 
excess pore pressure u∆  and the same 'emobφ  provided they are 
all on the same 45º sloped straight line. This is the case of 
points X and C and G and J in Figure 46. Take, for instance, 
points G and J that are on the same 45º sloped straight line 
and on the ESPs starting from 2'ep  (point E) with strain rates 

1tε  and 2tε , respectively. According to the complementary 
principle 1, ( ) ( ) t tε ε=G J , ( ) ( ) 2   u u u∆ = ∆ = ∆G J  and 

( ) ( )' '  emob emobtan tanφ φ=G  J . Similarly, ( ) ( )t tε ε=X C , 
( ) ( ) 1u u u∆ = ∆ = ∆ X  C  and ( ) ( )' '  emob emobtan tanφ φ=X C .

Consider now the ESPs ABCD and EFGH in Figure 46, 
both associated with the same strain rate 1tε  but starting from 
different isotropic effective stresses 1'ep  and 2'ep , respectively. 
As both ESPs are associated with the same strain rate 1tε , they 
are homothetic by hypothesis. Thus, the following equations 
hold valid for points C and G:

( ) ( )
1 2

' '

' 'e e

s s
p p

=
C G

 (78)

and

( ) ( )
' '1 2

' '

e e

t t
p p

=
C G

 (79)

The value of ( ) 'emobtanφ G  is given by
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−
=

′

G
G

G G


 (80)

Figure 45. A point Y on the ESP of a CIUCL test carried out with 
0tε ≠  and its corresponding point X on the bESP (associated with 
0tε = ).
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Dividing both numerator and denominator of Equation 80 
by 2'ep , one obtains:

( )

( )

( ) ( )

12
2 2

2 2

2 2

 

'

' 'e e'emob
' '

' 'e e

t
p ptan

s t
p p

φ
−

=
   

−      
   

G

G
G G

 (81)

Replacing the values of ( ) 2/' 'es pG  and ( ) 2/' 'et pG  in Equation 
81 by their respective values given by Equations 78 and 79 
and recalling that ( ) ( ) ( )12 2 11 1 1/ /' 'e e tp p Cη ε= =   , the 
following equation can be written:

( )

( )

( ) ( )

11

1 1
2 2

1 1
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' 'e e'emob
' '

' 'e e

t
p p

tan
s t

p p
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   

−      
   

C

G
C C

 (82)

Multiplying numerator and denominator of the right hand 
side of Equation 82 by 1'ep , Equation 83 is obtained as 
shown below:

( ) ( )

( )( ) ( )( )
11'

2 2
 emob

t
tan

s t
φ

′

−′

−
=

′

C
G

C C


 (83)

The right hand side of Equation 83 is the expres-
sion for ( )' .emobtan φ C This leads to the conclusion that 

( ) ( ) ( ) ( )     ' ' ' 'emob emob emob emobtan tan tan tanφ φ φ φ= = =G J C X .
On the other hand, considering points C and G in 

Figure 46, both belonging to ESPs corresponding to the 
same strain rate 1tε , the following expression can be written:

1 2

1 2' 'e e

u u
p p
∆ ∆

=  (84)

Since for the same strain rate 1tε  the curve / 'e tu p ε∆ ×  is 
assumed to be unique, points C and G are assumed to have 
the same tε . On the other hand, it should be noted in Figure 46 
that the ratio ( )2 2/ 'eu p∆  also holds for point J, which belongs 
to an ESP whose strain rate is 2tε . It is worth recalling that 
points G and J belong to different ESPs departing from the 
same 2'ep  but corresponding to the strain rates 1tε  and 2tε , 
respectively. However, for a fixed 'ep  the pore pressure u∆  
does not depend on the strain rate tε  (see hypothesis based 
on experimental evidences shown in section 7.2 – Figure 40). 
This leads to the conclusion that points X, C, G and J 
have the same values of tε , ( )/ 'eu p∆  and  'emobtanφ . This 
conclusion, which comes from the complementary principle 
1 and the above reasoning, allows to redraw Figure 46 using 
the normalized parameters /' 'es p  and /' 'et p  for coordinate 
axes, as shown in Figure 47. Figure 47 shows that, although 
points X, C, G and J belong to distinct normalized ESPs 
associated with different strain rates tε , they lie on the same 
45º sloped straight line.

The discussion presented above leads to the generalization 
of the complementary principle 1, which can be stated as follows:

Generalized complementary principle 1: During undrained 
shear of CIUCL  tests carried out on normally consolidated 
clay specimens, points on the plane ( ) ( )/   /×' ' ' 'e es p t p   
corresponding to the intersections of a given 45º sloped 
straight line and the several ESPs, each one associated 
with a different tε  value, will show, whatever the shear 
strain rate tε  is, the same values of tε , ( )/∆ 'eu p , and  

emobtan 'φ  (see Figure 47 – section 7.4).

The generalized complementary principle 1 leads to 
three corollaries, namely:

Figure 46. General normalization taking into account different values of 'ep  and tε .
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Corollary 1: CIUCL  tests carried out on a normally 
consolidated clay showing homothetic ESPs for any fixed 
tε  and a unique curve /  ∆ ×'e tu p ε , irrespective of tε , will 
show a unique basic curve /  ×' 'b e tt p ε , whatever tε  is.

Corollary 1 can be demonstrated as follows:
According to the generalized complementary 

principle 1 (see Figure 47), ( ) ( ) ( ) ( )t t t tε ε ε ε= = =X C G J  and 
( ) ( ) ( ) ( )      .= = =emob emob emob emobtan ' tan ' tan ' tan 'φ φ φ φG J C X

 Thus, Equation 83 can be rewritten as

( ) ( ) ( )

( ) ( )
( ) ( )2 2

   

 

' ' 'emob emob emob

'b'emob
' 'b b

tan tan tan

t
tan

s t

φ φ φ

φ

= = =

=
−

X C G

X
 J

X X

 (85)

Taking into account Figure 46, Equation 72 can be 
applied to points X and C, which are on the same 45º sloped 
straight line, obtaining Equation 86:

( ) ( ) ( ) ( ) ( )2 1  ' ' ' ' 'b emob emobt tan csc s tφ φ  = + −  X C C C C  (86)

Dividing both sides of Equation 86 by 1'ep , Equation 87 
is obtained:

( ) ( ) ( ) ( ) ( )
2

1 1 1
1  

' ' 'b ' 'emob emob' ' 'e e e

t s t
tan csc

p p p
φ φ

 
 = + −     

X C C
C C

 
(87)

Besides the fact that ( ) ( )  ' 'emob emobtan tanφ φ=C G , C 
and G are points from tests carried out with the same 1t tε ε=   
(see Figure 46) but consolidated to isotropic stresses 1'ep  and 

2'ep , respectively. This leads to Equation 88:

( ) ( ) ( ) ( )
1 1 2 2

' ' ' '

' ' ' 'e e e e

s t s t
p p p p

− = −
C C G G

 (88)

Replacing ( )'emobφ C  by ( )'emobφ G  and ( ) ( )1 1/ /' ' ' 'e es p t p − C C
 ( ) ( )1 1/ /' ' ' 'e es p t p − C C  by its equivalent value ( ) ( )2 2/ /' ' ' 'e es p t p − G G  

in Equation 87, Equation 89 is obtained as follows:

( ) ( ) ( ) ( ) ( )
2

1 2 2
1  

' ' 'b ' 'emob emob' ' 'e e e

t s t
tan csc

p p p
φ φ

 
 = + −     

X G G
G G  (89)

As points G and J lie on the same 45º sloped straight line 
(see Figure 46) and on ESPs starting out from the same 

2' 'e ep p= , one can write:

( ) ( ) ( ) ( )
2 2 2 2

  ' ' ' '

' ' ' 'e e e e

s t s t
p p p p

− = −
G G J J  (90)

As ( ) ( )' 'emob emobφ φ=G J , replacing ( )'emobφ G  by 
( )'emobφ J  and ( ) ( )2 2/ /' ' ' 'e es p t p − G G  by its equivalent 

value ( ) ( )2 2/ /' '' 'e es p t p − J J  in Equation 89, Equation 91 
is obtained:

( ) ( ) ( ) ( ) ( )
2

1 2 2
1  

' ' 'b ' 'emob emob' ' 'e e e

t s t
tan csc

p p p
φ φ

 
 = + −     

X  J  J
J J  (91)

As points X, C, G and J  lie on the same 45º sloped straight line 
in the ( / )  ( / )' ' ' 'e es p t p×   plane, it can be observed from Figure 47 
that ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2/ / / / / /  /  /' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'b e b e e e e e e es p t p s p t p s p t p s p t p       − = − = − = −       X X C C G G J J

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2/ / / / / /  /  /' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'b e b e e e e e e es p t p s p t p s p t p s p t p       − = − = − = −       X X C C G G J J .  
Since point X is a generic point of the normalized basic effective 
stress path (from now on called bESPn), for which 0tε = , 
Equation 91 holds valid for each and every point on the bESPn 
and can be written according to the generic form of Equation 92:

( )2 1  
' ' 'b ' 'emob emob' ' 'e e e

t s ttan csc
p p p

φ φ
 

= + − 
 

 (92)

Figure 47. Normalized effective stress paths /' 'es p  × /' 'et p  for different strain rates ( )tε .
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Finally, it is worth reminding that points X, C, G and 
J have the same shear strain tε , which implies a one-to-
one correspondence between /' 'b et p  and tε , leading to the 
conclusion that the basic curve /  ' 'b e tt p ε×  is unique, as it was 
to be demonstrated.

Corollary 2: CIUCL  tests carried out on a normally 
consolidated clay showing homothetic ESPs for any fixed tε  
and a unique curve /   ∆ ×'e tu p ε , irrespective of tε , will show 
a unique normalized basic effective stress path (bESPn) 
( )/ , /' ' ' 'b e b es p t p , whatever tε  is.

Corollary 2 results from the following reasoning:
Starting from Equation 74, which gives the expression 

for 'bs , and following a similar line of reasoning adopted in 
the proof of corollary 1, it can be shown that a unique curve 

/  ×' 'b e ts p ε  exists. Taking the  /' 'b et p  values of the unique 
 /   ' 'b e tt p ε×  curve, as shown in corollary 1, and associating 
them to the /' 'b es p  values corresponding to the same tε  
values of the likewise unique /  ' 'b es p × tε  curve, it will also 
be obtained a unique curve formed by the ordered pairs 
( / , /' ' ' 'b e b es p t p ), which is, by definition, the normalized basic 
effective stress path (bESPn).

Corollary 3: CIUCL  tests carried out on a normally 
consolidated clay showing homothetic ESPs for any fixed 
tε  and a unique curve /   ∆ ×'e tu p ε , irrespective of tε , will 
show a unique curve ×emob t'tan   φ ε , whatever tε  is.

Corollary 3 can be demonstrated following the reasoning 
presented below:

Considering corollaries 1 and 2, both curves  /    ' 'b e tt p ε×  
and /   ' 'b e ts p ε×  are unique. This means that one and only one 
value of shear strain tε  is associated with each and every 
ordered pair ( )/ , /' ' ' 'b e b es p t p . However,  'emobtanφ  can be 

written in terms of 'bs  and 'bt  as ( ) ( )2 2/' ' ' 'emob b b btan t s tφ = − . 
Dividing both numerator and denominator of the right hand 
side of such expression by 'ep , Equation 93 is obtained:

( ) ( )2 2

/
 

/ /

' 'b e'emob
' ' ' 'b e b e

t p
tan

s p t p
φ =

−
 (93)

As /' 'b et p  and /' 'b es p  are both exclusive functions of 
tε , thus  emobtanφ  will also be a sole function of tε , which 

proves corollary 3, as illustrated in Figure 48.
Thus, it can be concluded that curves /   ' 'b e tt p ε× , 

   'emob ttanφ ε×  and the normalized basic effective stress path 
(bESPn), given by the ordered pairs ( )/ , /' ' ' 'b e b es p t p , are 
properties of a given normally consolidated plastic soil.

8. Real CIUCL  tests

8.1 Introduction
A model of behaviour for saturated normally consolidated 

clays subjected to CIUCL  tests taking into account strain 
rate ( )tε  was developed in section 7. Based on the developed 
model, the main results expected for an ideal plastic soil 
subjected to CIUCL  tests were also presented.

At first, this work was intended to present a testing 
program consisting of CIUCL , undrained creep and stress 
relaxation tests carried out on samples from a very soft clay 
deposit close to the city of Rio de Janeiro, called Sarapuí II 
[see Danziger et al. (2019)]. The main aim would be to 
check whether the results from such testing program could 
be predicted by the model presented in section 7. However, 
the arrival of the pandemic in the beginning of 2020 made 
such testing program unfeasible. For this reason, the tests 
herein analyzed are those carried out by Lacerda (1976) on 
San Francisco Bay Mud samples.

Although the Lacerda’s (1976) testing program was not 
planned to study the behavioural aspects presented in section 7, 
it is suitable since it is consisted of CIUCL , undrained creep 
and stress relaxation tests, which can be analyzed under the 
light of the proposed model. Furthermore, San Francisco Bay 
Mud is a worldwide known and comprehensively studied 
soil. The main disadvantage of using Lacerda’s (1976) tests 
is that they were carried out when computer-aided data 
acquisition systems were not available for soil testing. This 
disadvantage makes it harder to experimentally identify 
special aspects already discussed such as the “viscosity jump”. 
Nevertheless, the Lacerda’s (1976) testing program is useful 
to check whether its experimental results are in agreement 
with the main propositions made by the presented model.

8.2 Summary of the model hypotheses and steps to be 
followed to check their validity

To check the validity of the model, it is necessary to verify 
if its 11 hypotheses are fulfilled. Among these hypotheses, 
listed below, the first four come from experimental evidences. 
The next six are working hypotheses of theoretical nature 
and the last one is hybrid since it comes from experimental 
evidences as well as from theoretical considerations.

Figure 48. Uniqueness of    'emob ttanφ ε×  relationship for each and 
every value of 'ep  and tε .
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These hypotheses are the following:

1. Normally consolidated, saturated specimens of a 
given clay compressed to different isotropic stresses 

'ep  in CIUCL  tests and sheared with the same shear 
strain rate tε  show similar curves  ' tt ε×  and   tu ε∆ ×  
and homothetic  ' 'p q×  or s  ' 't×  effective stress 
paths with the origin as the centre of homothety. 
This means that for a fixed strain rate tε  the clay 
exhibits normalized behaviour in relation to 'ep .

2. For a given strain rate tε , the ordered triples 
( ), ,' 'f f fp q v , with subscripts f denoting failure, 
define a smooth curve in the ( , , )' 'p q v  space called 
critical state line (CSL) associated with this given 
shear strain rate tε . For each shear strain rate tε , there 
is only one corresponding CSL.

3. For a fixed tε , the projection of the CSL on the plane 
 ×' 'p q  or  ×' 's t  is a straight line passing through the 

origin.
4. When CIUCL  tests are carried out with the same 

isotropic effective stress 'ep  and different shear strain 
rates tε , the deviator stresses are higher the higher 
the shear strain rate. However, pore pressure values 
are not affected by shear strain rate. This means that 
for each tε  there is just one curve /  ' 'e tt p ε× , but 
the curve /  'e tu p ε∆ ×  is unique regardless of the tε  
value.

5. Validity of Terzaghi’s PES equation: uσ σ′ = − .
6. The shear stress ατ  acting on a plane whose normal 

makes an angle α  with 1σ  direction consists of two 
parts: a friction part φατ  and a viscous part ηατ , i.e., 
α φα ηατ τ τ= + .

7. The viscous part of the shear stress ηατ  is written 
as ( ) ( )   2e f sinηατ η γ α=  , being ( )eη  defined 
as soil viscosity, a function of void ratio and of 
soil structure, and ( )f γ  an exclusive function 
of distortion rate γ . On planes whose normal 
makes 45º with 1σ  direction, 2 90α = °  and 

( ) ( )( ) ( ) ( )45 1 3 /  e f d dt e fητ η ε ε η γ° = − = = .
8. The friction part of the shear stress acting on a plane 

whose normal makes an angle α  with 1σ  direction 
corresponds to ( )1 3 / 2   2' ' sinφα α ηατ τ τ σ σ α = − = − −   ( )1 3 / 2   2' ' sinφα α ηατ τ τ σ σ α = − = − −  .

9. The ordered pairs ( ),'α ηασ τ  define the state of 
mobilized viscosity of a soil, which is represented by 
the viscosity ellipse. The ordered pairs ( ),'α φασ τ  define 
the state of mobilized friction, which is represented 
by the friction ellipse. The sum of these two elipses 
corresponds to the Mohr’s circle of effective stress 
Thus, the two ellipses cannot exist separately since 
only the stresses given by the Mohr’s circle satisfy 
equilibrium.

10. As a consequence of hypotheses (6) and (7), during 
the undrained shear phase of a CIUCL test carried out 
with constanttε = , ηατ  is instantaneously mobilized 

and remains constant up to the end of shear. During 
the undrained shear phase of a CIUCL test there is 
no volume change but only shear strains. Thus, the 
deviator stress increase during the undrained shear 
is due to friction mobilization, which occurs as shear 
strains increase. Therefore, failure process is ruled 
by friction mobilization. For a given distortion γ , 
friction is fully mobilized and failure occurs. This 
means that, in a normally consolidated clay, failure 
will occur when the friction ellipse touches the 
strength envelope, which is the straight line passing 
through the origin with slope  'etanφ , as illustrated in 
Figure 28. In other words, failure will occur when 
Equation 62 is met.

11. Finally, the last hypothesis assumes the viscous 
resistance ( ) ( ) ( )  'ee f C pηη γ γ= =  . This means 
that, even though ( )Cη γ  is a non-linear function of 
distortion rate and of soil structure, for any constantγ = , 
 is proportional to 'ep . This hypothesis is a hybrid 
one because, although it comes from hypotheses 
(6) and (7), which are of theoretical nature, it also 
appears as experimental evidence via the “viscosity 
jumps”, as shown in  Figures 34 and 35. As  is 
proportional to 'ep , this hypothesis is also in agreement 
with hypothesis (1), which assumes a normalized 
behaviour in relation to 'ep .

Instead of using distortion γ  and distortion rate γ
as they appear in hypotheses (7), (10) and (11), the shear 
strain tε  and the shear strain rate tε  will respectively be 
used from now on.

The validity of hypotheses (1) to (4) can be directly 
checked by observing whether or not the plots mentioned 
in each of them are fulfilled. Hypotheses (6) to (10), of 
theoretical nature, are concerned with the effects of the 
viscous adsorbed water on the behaviour of plastic soils. 
Hypothesis (11), a hybrid one, concerns the “viscosity 
jump”. The “viscosity jump” is a theoretical aspect of the 
instantaneous mobilization of the viscous resistance. On the 
other hand, experimental evidences show that the “viscosity 
jump” is proportional to the effective isotropic stress 'ep , as 
shown in Figures 34 and 35. The hybrid nature of  hypothesis 
(11) resides in these two aspects.

The eleven hypotheses together with the discussions 
presented in section 7 lead to the generalized complementary 
principle 1, from which corollaries 1, 2 and 3 are consequences. 
Thus, in order to check whether or not the model holds 
valid for a given soil, it is enough to check if hypotheses 
(1) to (4) and (11) as well as the generalized complementary 
principle 1 are fulfilled. If so, the other hypotheses will 
automatically be fulfilled since they are embedded in the 
generalized complementary principle 1. The same will happen 
to corollaries 1, 2 and 3 because they are consequences of 
the generalized complementary principle 1. This will be the 
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task to be accomplished in the next sections so as to check if 
Lacerda’s (1976) CIUCL  test results follow the predictions 
of the presented model.

8.3 Testing program carried out on San Francisco Bay 
Mud by Lacerda (1976)

The soil samples tested by Lacerda (1976) were taken 
with thin-walled 125 mm-diameter and 300 to 450 mm-long 
fixed piston samplers. The samples were taken at Hamilton 
Air Force Base, Marin County, between the 5.20 m and 
7.60 m depth.

According to Lacerda’s (1976) description, San Francisco 
Bay Mud “is a normally consolidated, saturated clay, 
composed of illite, and chlorite with some montmorillonite, 
vermiculite and kaolinite. Very thin silty lenses are found along 
horizontal planes and small broken shells are occasionally 
present, but the soil as a whole is fairly intact and easily 
trimmable” (Lacerda, 1976, p. 262). Characterization tests 
results are summarized in Table 1.

From the tests carried out by Lacerda (1976) only those 
which allow the comparison and interpretation of their results 
under the light of the concepts presented in section 7 were 
selected. Such tests are identified in the first two columns of 
Table 2. In the other columns of Table 2, the specific volume 
( v ) after isotropic consolidation, the isotropic effective stress 

to which the specimen was consolidated ( )'ep  and the shear 
strain rate ( )tε  during undrained shear are presented.

The terminology undrained creep test is herein used to 
denote a test where the specimen is initially consolidated to 
an isotropic effective stress 'ep  followed by an undrained stage 
during which a constant deviator stress ( ) ( )1 3 a rσ σ σ σ− = −  
is applied, being 3 'r e cp uσ σ= = +  and cu  the back pressure. 
During the undrained creep stage, shear strains ( ) 3 / 4 t t aε ε ε=  
and pore pressures u∆  are measured over time and strain rates 

tε  ( )3 / 4t aε ε=   are also computed over time.
The undrained step creep test is similar to the undrained 

creep test, except for the fact that during the undrained creep 
stage the deviator stress ( )a rσ σ−  is applied in steps, each 
step lasting for a given time period. At the beginning of a new 
step, the deviator stress is raised by increasing aσ , whereas 

rσ  is kept constant throughout the whole test. During each 
step, shear strains  tε  and pore pressures u∆  are measured over 
time and strain rates tε  are computed. Thus, the undrained 
step creep test can be compared to the conventional CIUCL 
tests, made with constanttε = , provided the points to be 
compared from both test types have the same tε  values. An 
undrained creep test where a single deviator stress value is 
applied during the whole undrained creep stage can also 
be compared to a CIUCL test. However, in this case, the 
comparison is restricted to only the two points having the 

Table 1. Characterization tests results of San Francisco Bay Mud samples (Lacerda, 1976).

Natural water 
content w (%)

Liquid limit  
wL (%)

Plastic limit  
wP (%)

Plasticity index 
IP (%)

Specific gravity 
G

Clay fraction  
% < 2μm Activity

88 to 93 88 to 90 35 to 44 45 to 55 2.75 60 0.83

Table 2. Lacerda’s tests (Lacerda, 1976) analyzed in this article.

Test Description Specific volume after 
isotropic consolidation v

Isotropic compression 
stress '

ep  (kPa)
Shear strain rate tε  

( )% / min.
FP-13 CIUCL 3.00 118 0.09

FP-23 CIUCL 2.81 158 0.09

FP-32 CIUCL 2.98 98.0 0.09

FP-42 CIUCL 2.92 137 0.09

SR-I-5 stress relax. 3.11 78.4 1.15
SR-I-8 stress relax. not informed 78.4 5.5 × 10-4

SR-I-9 stress relax. not informed 314 0.10
CR-I-1 undrained creep 3.15 78.4 variable
CR-I-2 undrained creep 3.02 78.4 variable

CR-71-1 undrained creep 2.78 196 variable
CR-I-ST-2 undr. step creep 2.60 314 variable
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same tε  values. These questions will become clearer during 
the presentation of undrained creep tests data in section 8.4.

The name stress relaxation test is herein used to denote a 
CIUCL test where the undrained shear phase is carried out in 
consecutive stages of tε  intervals, along which constanttε = . 
At the end of each interval the load frame motor is switched 
off, thus making 0=  and starting a stress relaxation phase. 
Since the drainage is closed and the soil is saturated, during 
the stress relaxation phase there is neither volume changes 
nor shear strain changes. Keeping ( )3 'r e cp uσ σ= = +  
constant, deviator stress ( )a rσ σ−  and pore pressure u∆  are 
measured over time. After observing stress relaxation over 
a certain time period, the load frame motor is switched on 
again with the same or a different strain rate tε  used during 
the tε  interval which preceded the current stress relaxation 
phase. This is the case shown in Figure 40, where different 
shear strain rates tε  were used between consecutive stress 
relaxations phases.

From now on, the Lacerda’s (1976) tests results are 
compared to the predictions of the model presented in section 7.

The data concerning the isotropic compression of San 
Francisco Bay Mud normally consolidated specimens (presented 
in Table 2) are plotted in Figure 49. The virgin isotropic 
compression line (VICL) is presented in Figure 49, showing the 
relationship between specific volume v and isotropic effective 
stress 'ep  obtained by Lacerda (1976) for San Francisco Bay Mud.

Although presented in Figure 49, test CR–I–2 will not 
be taken into account in the analysis that follows since it 
presents a specific volume which is considerably distant from 
the  'ev p×  line. This suggests that such specimen is slightly 
overconsolidated, with an overconsolidation ratio of 1.3. 
The undrained shear phases of SR–I–5 test will not also be 
analysed herein since the shear strain rate 1.15 % / min. tε = , 
applied up to 2.5 %aε ≅ , is considered too high. Such strain 
rate has probably not allowed an adequate equalization degree 
of pore pressure measured at the base of the specimen.

8.4 Checking the model using San Francisco Bay Mud 
tests results

The eleven hypotheses listed in section 8.2 and the 
discussions of section 7 have led to the generalized complementary 
principle 1, from which corollaries 1, 2 and 3 emerge. Thus, 
to check whether or not the model holds valid for a given 
plastic soil, it is enough to verify if the hypotheses (1) to (4) 
and (11) and the generalized complementary principle 1 are 
fulfilled. If so, the remaining hypotheses will automatically 
be fulfilled since they are embedded in the generalized 
complementary principle 1. Besides, once the validity of the 
generalized complementary principle 1 is shown, corollaries 
1, 2 and 3 will also be automatically fulfilled.

In a few words, to check whether or not San Francisco 
Bay Mud normally consolidated specimens fulfill the model 
presented in section 7, the tasks listed and explained at the 
end of section 8.2 must be carried out. These tasks are:

(i) Validity check of hypotheses (1) to (4), which come 
from experimental evidences.

(ii) Validity check of hypothesis (11) (from a hybrid 
nature – experimental + theoretical).

(iii) Validity check of the generalized complementary 
principle 1.

(iv) Validity check of corollaries 1, 2 and 3.

Following the sequential tasks listed above, the first 
thing to do is to check the validity of hypothesis (1), that is: 
to verify if normally consolidated, saturated specimens of 
San Francisco Bay Mud subjected to CIUCL  tests carried 
out with constanttε =  really present similar  ' tt ε×  and   tu ε∆ ×  
curves and homothetic  ' 's t×  ESPs with centre of homothety 
at the origin. If this hypothesis is fulfilled, the normalized 

Figure 49.Virgin isotropic compression line – VICL – San Francisco Bay Mud (Lacerda, 1976).
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Figure 50. Curves /  ' 'e tt p ε×  and /   'e tu p ε∆ ×  for CIUCL  tests on San Francisco Bay Mud carried out with 0.09% / min.tε =  [data 
from Lacerda (1976)].

Figure 51. Normalized ESPs ( ) ( )/   /' ' ' 'e es p t p×  for tests with a fixed strain rate tε .
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Figure 53 shows that the projection of the CSL onto the 
plane  ×' 'p q  (or  ×' 's t ) for the fixed 0.10 % / min.tε ≅ is a 
straight line passing through the origin. Thus, Figure 53 illustrates 
that hypothesis (3) is also fulfilled by San Francisco Bay Mud.

Based on the results from CIUCL  tests carried out 
with 0.10 % / min.tε ≅ , it is possible to obtain φ′ for normally 
consolidated San Francisco Bay Mud corresponding to 

0.10 % / min.tε ≅ . This can be done since  and M φ′  are 
related to each other by

( )6  / 3  M sin sinφ φ−′= ′  (94)

Figure 53. Critical state line for San Francisco Bay Mud corresponding 
to a strain rate 0.10 % / min.tε ≅  [data from Lacerda (1976)].

Figure 52. Virgin isotropic compression line (VICL) and critical state line (CSL) for San Francisco Bay Mud corresponding to a strain 
rate 0.10 % / min.tε ≅ .

curves /  ' 'e tt p ε×  and /   'e tu p ε∆ ×  and the normalized ESP 
/   /' ' ' 'e es p t p×  will be unique for a fixed tε .

This is the case indeed. Normalized curves /  ' 'e tt p ε×  
and /   'e tu p ε∆ ×  from CIUCL  tests carried out with 

0.09 % / min.tε = are shown in Figure 50. The set of curves 
/  ' 'e tt p ε×  can be fairly represented by a unique curve. The 

same occurs for the curves /  'e tu p ε∆ × .
The normalized ESPs ×' ' ' 'e es / p   t / p  of the tests plotted 

in Figure 50 are plotted in Figure 51, showing that ESPs 
corresponding to tests carried out with 0.09 % / min.tε =  can 
also be represented by a unique ESP. This means that ESPs 
corresponding to tests carried out with 0.09 % / min.tε =  
are homothetic with the origin as the centre of homothety. 
Some points from test SR–I–9 where the shear strain rate is 

0.10 % / min.tε =  are also plotted in Figure 51. 0.10 % / min.tε =  
is almost the same strain rate of 0.09 % / min.tε =  used in tests 
FP–13, FP–23, FP–32 and FP–42. Although the results shown 
in Figures 50 and 51 are restricted to 0.10 % / min.tε ≅ , they 
show that hypothesis (1) is fulfilled.

Figure 51 also shows the part of the ESP for SR–I–8 test 
up to the first stress relaxation stage where the shear strain 
rate applied was 45.5 1 0  % / min.tε

−= × . This illustrates that 
the lower the shear strain rate tε , the lower the /' 'et p  values 
of the normalized ESP, which is in agreement with the model 
presented in section 7.

Hypothesis (2) states that for CIUCL tests carried out 
with a fixed shear strain rate tε  the ordered triples ( ), ,' 'f f fp q v  
at failure define a smooth curve in the   ' 'p q v× ×  space called 
critical state line (CSL) associated with that fixed shear strain 
rate tε . This means: for a given shear strain rate tε  there is 
only one corresponding CSL. This result is illustrated in 
Figures 52 and 53 for the CIUCL tests carried out with 

0.10% / min.tε ≅ .
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where /' 'f fM q p=  is the slope of the CSL corresponding to 
a given tε  on the plane  ' 'p q× . From Figure 53, one obtains 

1.24M = , which corresponds to 31φ′ ≅ °  and to the ordered 
pair ( ) ( )/ , / 0,70;0,36' ' ' 'f e f es p t p = , assumed as the point 
representing failure in Figure 51.

Although there is a lack of data to obtain M  and φ′  
corresponding to tε  values different from 0.10 % / min.≅ , 
the available data corresponding to 45.5 1 0 % / min.tε

−= ×  
and 0.7 % / min.≅ , suggest that for each shear strain rate 
there is only one CSL (see also Figure 31 and the discussion 
associated with it).

Hypothesis (4) must be checked next. This hypothesis 
assumes that, in CIUCL  tests, the higher the shear strain rate 
applied, the higher the values /' 'et p  in /  ×' 'e tt p ε  curves. 
On the other hand, hypothesis 4 also assumes that curves 

/  'e tu p ε∆ ×  do not depend on tε .
Figure 54 shows /  ' 'e tt p ε×  and /  'e tu p ε∆ ×  curves 

corresponding to the undrained shear phases of stress 

relaxation tests SR–I–8 and SR–I–9. Strain rate effects are 
mainly observed on /  ' 'e tt p ε×  curves but hardly noted on 

/  'e tu p ε∆ × , where, regardless the strain rate, experimental 
results fall within a narrow zone. In Figure 54 it should be 
noted that tε  assumes four different orders of magnitude. 
One can argue that, with 3.4 % / min.tε = , the strain rate 
criterion which should have been used aiming pore pressure 
equalization along the specimen was not probably fulfilled 
during the first undrained shear phase of test SR–I–9. 
Thus, u∆  values measured during the first undrained shear 
phase of test SR–I–9 are probably underestimated. After 
this observation, it can be concluded from Figure 54 that 
curves /  'e tu p ε∆ ×  can be represented by a unique curve, 
which means that /  'e tu p ε∆ ×  curves can be considered to 
be independent of the strain rate tε .

The assumption made in hypothesis (4) considering that 
strain rate effects are remarkable on /  ' 'e tt p ε×  curves but 
are practically absent in /  'e tu p ε∆ ×  curves is even clearer 
in Figure 55 obtained by overlapping Figures 50 and 54.

FigurE 54. Curves /  ' 'e tt p ε×  and /   'e tu p ε∆ ×  for undrained shear phases of stress relaxation tests on San Francisco Bay Mud carried 
out with different values of tε .
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Figure 55. /  ' 'e tt p ×  and /  'e tu p ε∆ ×  for CIUCL and stress relaxation tests on San Francisco Bay Mud for several different tε  values 
[data from Lacerda (1976)].

After checking the validity of hypotheses (1) to (4), 
one can now check hypothesis (11), which, being from 
a hybrid nature, is made up of two parts: one that comes 
from experimental evidences and the other that comes from 
theoretical considerations.

According to hypothesis (11), ( ) ( ) ( )  'ee f C pηη γ γ= =   
or, recalling that 2 tγ ε=  , ( ) 't eC pη ε=  . This means that for 
a given shear strain rate tε  the “viscosity jump” is proportional 
to 'ep , as shown in Figures 34 and 35. Thus, the normalized 
ESPs ( ) ( )/   /' ' ' 'e es p t p×  corresponding to the same tε  should 
be represented by a unique ESP beginning with a “viscosity 
jump” along a 45º sloped straight line, which suddenly changes 
its direction moving up and to the left, showing an elbow shaped 
curve like those presented in Figure 47.

Although the normalized ESPs for 0.10 % / min.tε ≅  in 
Figure 51 can be considered as a unique curve, the absence 
of the “viscosity jump” is noteworthy. Such absence can be 
possibly assigned to the fact that an automatic data acquisition 

system was not used, which greatly harms the measurement 
of s’, t’ and Δu corresponding to the beginning of the tests. 
Another possible explanation for the absence of the “viscosity 
jump” is the occurrence of bedding errors, which will be not 
discussed here. One of the signs that some “disturbance” has 
affected the beginning of CIUCL  test data is the fact that 
points belonging to ESPs associated with 0.09% / min.tε =  
fall below points belonging to the ESP associated with 

45.5 1 0 % / min.tε
−= × , as shown in Figure 51. Thus, one 

cannot evaluate ( )tCη ε  values and, consequently, 'eφ  value 
via Figure 51.

In order to obtain ( )tC   and 'eφ , it will be necessary 
to make use of the undrained creep tests data. As previously 
explained, undrained creep tests are carried out by keeping the 
deviator stress constant, measuring tε  and u∆  over time and 
evaluating tε . This way of evaluating tε  makes its values more 
reliable, particularly in the early phase of the test when bedding 
errors are of greater magnitude. Accordingly, the normalized 
ESPs for the undrained creep tests are shown in Figure 56. 



Martins

Martins, Soil. Rocks, São Paulo, 2023 46(2):e2023006123 45

Figure 56. Normalized effective stress paths (ESPs) for undrained creep tests on normally consolidated specimens of San Francisco 
Bay Mud.

Figure 57. Normalized ESPs for 3 different tε  values determined from undrained creep tests.

As a reference, the normalized ESP of test SR–I–8 carried 
out with 45.5 1 0  % / min.tε

−= ×  is also shown in Figure 56. 
Values of tε , tε , /' 'et p , /' 'es p  and / 'eu p∆ , corresponding 
to the points shown in Figure 56, are presented in Table 3.

Based on values from Table 3 and on ESPs shown in 
Figures 51 and 56, ESPs for some selected shear strain rates tε  can 
be sketched. ESPs sketches corresponding to 110 % / min.tε

−= , 
210 % / min.tε
−=  and 45.5 1 0 % / min.tε

−= ×  are shown in 
Figure 57.

In Figure 57, each ESP corresponding to a fixed tε  intersects 
the normalized total stress path at a point whose ordinate gives 
the Cη  value for that fixed tε . Thus, from Figure 57 one can 
estimate the values of Cη for 45.5 1 0 % / min.−× , 210 % / min.−  
and 110 % / min.−  as being equal to 0.035, 0.06 and 0.09, 
respectively. With these Cη values, tan 'eφ  can be evaluated 
via Equation 62. Alternatively, tan 'eφ  can be evaluated using 
Equation 95, which is Equation 62 written in a normalized 
way, that is:
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Taking ( )11 0 % / min. 0.09Cη
− =  and the ordered pair 

( ) ( )/ , / 0.70,0.36' ' ' 'f e f es p t p =  corresponding to stress states 
at failure in CIUCL  tests on normally consolidated specimens 
of San Francisco Bay Mud carried out with 0.1 % / min. tε =  
and 0.09 % / min., one obtains:

( )( )
( ) ( )2 2

2 2

/
 

/ /

0.36 0.09 0.45    24
0.70 0.36

' 'f e t
'e

' ' ' 'f e f e

'e

t p C
tan

s p t p

η ε
φ

φ

−
= =

−

−
= → ≅ °

−



 (96)

This means that, in the normally consolidated domain, the 
part of the undrained shear strength of San Francisco Bay 
Mud which can be assigned to friction can be evaluated using 

24'eφ ≅ °, being 'eφ  the true angle of internal friction, as defined 
by Hvorslev. This also means that, embedded into the shear 
strength values of normally consolidated specimens of San 
Francisco Bay Mud calculated with 31'φ ≅ °, there is a part 
which must be assigned to the viscous resistance.

Back to Figure 51, it is observed that, as already discussed, 
the ESPs for CIUCL tests FP–13, FP–23, FP–32 and FP–42 
seem to be affected by bedding errors, mainly occurring up 
to the point of coordinates ( ) ( )/ , / 0.92,0.25' ' ' 'e es p t p ≅ . The 

shear strain 0.40 %tε ≅  is associated with / 0.25' 'et p =  (see 
Figure 55). Thus, by neglecting the ESPs points concerning 
FP–13, FP–23, FP–32 and FP–42 tests for which 0.40 %tε ≤  
and overlapping Figures 51 and 57, Figure 58 is obtained.

Figure 58 shows that, making the appropriate “corrections” 
of the initial parts of the ESPs in Figure 51 and taking into 
account the undrained creep tests, hypothesis (11) is also fulfilled.

The results of all tests ( CIUCL , stress relaxation and 
undrained creep) are presented in Figure 59 to show that 
normally consolidated San Francisco Bay Mud follows 
hypotheses (1) to (4) and (11), regardless of the test type.

Going ahead with the task of checking whether or not 
the model is appropriate to predict the behaviour of normally 
consolidated San Francisco Bay Mud, now it is necessary 
to check the validity of the generalized complementary 
principle 1, whose statement is repeated below.

Generalized complementary principle 1: During 
undrained shear of CIUCL  tests carried out on normally 
consolidated clay specimens, points on the plane 
( ) ( )/   /' ' ' '×e es p t p  corresponding to the intersections of 
any given 45º sloped straight line and the several ESPs, 
each one associated with a different tε  value, will show the 
same values of tε , ( )/ '∆ eu p , and '

emobtanφ , whatever the 
shear strain rate tε  may be.

The generalized complementary principle 1 is illustrated 
in Figure 47, where points X, C, G and J all have the same 
values of tε , ( )/ 'eu p∆  and tan 'emobφ .

The generalized complementary principle 1 was stated by 
induction according to the following reasoning: In Figure 47, 
points A, E, B, F and I lie on the same 45º sloped straight line 
and all of them have 0tε = , ( )/ 0'eu p∆ =  and tan 0'emobφ = , 

Figure 58. Normalized effective stress paths ( )/' 'es p  × ( )/' 'et p  for all tests with different strain rates ( )tε .
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Table 4. Validation checking of the generalized complementary principle 1 for San Francisco Bay Mud [data from Lacerda (1976)].

Test ( )%tε ( )% / min.tε ' et p /' 'es p / 'eu p∆ Cη 'emobtanφ

FP–23 0.13 ~1.0 × 10-1 0.123 0.953 0.17 0.09 0.035
FP–32 0.13 ~1.0 × 10-1 0.18 0.95 0.23 0.09 0.096
FP–42 0.13 ~1.0 × 10-1 0.17 0.960 0.21 0.09 0.075

CR–I–ST–2 0.14 8.4 × 10-2 0.172 1.01 0.16 0.09 0.082
FP–32 0.29 ~1.0 × 10-1 0.241 0.920 0.32 0.09 0.170
FP–42 0.29 ~1.0 × 10-1 0.231 0.931 0.30 0.09 0.156

CR–I–1 0.29 0.09 0.234 0.934 0.300 0.09 0.159
FP–23 0.35 ~1.0 × 10-1 0.217 0.917 0.30 0.09 0.143
FP–32 0.36 ~1.0 × 10-1 0.264 0.914 0.35 0.09 0.199
FP–42 0.35 ~1.0 × 10-1 0.25 0.91 0.34 0.09 0.183
SR–I–8 0.33 5.5 × 10-4 0.193 0.866 0.33 0.035 0.187
FP–23 0.45 ~1.0 × 10-1 0.25 0.89 0.36 0.09 0.187
FP–32 0.46 ~1.0 × 10-1 0.28 0.90 0.38 0.09 0.222

CR–I–1 0.45 1.0 × 10-2 0.234 0.874 0.36 0.06 0.207
CR–I–ST–2 0.55 1.0 × 10-2 0.242 0.852 0.39 0.06 0.223

FP–23 0.58 ~1.0 × 10-1 0.265 0.885 0.38 0.09 0.207
CR–71–1 0.60 0.075 0.281 0.871 0.41 ~0.09 0.232
SR–I–8 0.68 5.5 × 10-4 0.244 0.794 0.45 0.04 0.270
FP–13 0.69 ~1.0 × 10-1 0.29 0.88 0.41 0.09 0.241
FP–23 0.70 ~1.0 × 10-1 0.28 0.87 0.41 0.09 0.231
FP–32 0.70 ~1.0 × 10-1 0.315 0.875 0.44 0.09 0.276
FP–42 0.71 ~1.0 × 10-1 0.304 0.854 0.45 0.09 0.268

CR–I–1 0.75 6.5 × 10-4 0.234 0.804 0.43 0.04 0.252
SR–I–8 0.75 5.5 × 10-4 0.247 0.784 0.46 0.035 0.285
FP–23 0.75 ~1.0 × 10-1 0.285 0.86 0.43 0.09 0.240
FP–42 0.75 ~1.0 × 10-1 0.304 0.851 0.46 0.09 0.269
FP–13 1.0 ~1.0 × 10-1 0.319 0.833 0.48 0.09 0.298
FP–23 1.0 ~1.0 × 10-1 0.325 0.833 0.47 0.09 0.306
FP–32 1.0 ~1.0 × 10-1 0.334 0.846 0.49 0.09 0.314
FP–42 1.0 ~1.0 × 10-1 0.322 0.825 0.50 0.09 0.305
SR–I–9 1.0 1.0 × 10-1 0.317 0.863 0.45 0.09 0.283

CR–71–1 0.97 ~1.0 × 10-2 0.281 0.811 0.47 0.06 0.290
CR–I–ST–2 1.00 ~1.0 × 10-1 0.312 0.832 0.48 0.09 0.288

FP–13 1.15 ~1.0 × 10-1 0.328 0.82 0.51 0.09 0.317
FP–23 1.16 ~1.0 × 10-1 0.312 0.812 0.50 0.09 0.296
FP–32 1.18 ~1.0 × 10-1 0.345 0.835 0.51 0.09 0.335
FP–42 1.20 ~1.0 × 10-1 0.33 0.800 0.53 0.09 0.329
FP–13 1.38 ~1.0 × 10-1 0.34 0.80 0.54 0.09 0.345
FP–23 1.40 ~1.0 × 10-1 0.324 0.794 0.53 0.09 0.323
FP–32 1.42 ~1.0 × 10-1 0.356 0.816 0.54 0.09 0.362
FP–42 1.44 ~1.0 × 10-1 0.339 0.784 0.56 0.09 0.352
FP–13 1.62 ~1.0 × 10-1 0.347 0.79 0.56 0.09 0.362
FP–23 1.62 ~1.0 × 10-1 0.332 0.782 0.55 0.09 0.342
FP–32 1.64 ~1.0 × 10-1 0.364 0.809 0.56 0.09 0.379
FP–13 1.83 ~1.0 × 10-1 0.354 0.774 0.58 0.09 0.384
FP–23 1.86 ~1.0 × 10-1 0.336 0.766 0.57 0.09 0.357
FP–42 1.80 ~1.0 × 10-1 0.345 0.755 0.59 0.09 0.380
FP–42 2.05 ~1.0 × 10-1 0.345 0.735 0.61 0.09 0.393
FP–13 2.08 ~1.0 × 10-1 0.357 0.757 0.60 0.09 0.400
FP–23 2.12 ~1.0 × 10-1 0.34 0.74 0.60 0.09 0.380
FP–32 2.10 ~1.0 × 10-1 0.372 0.772 0.60 0.09 0.417

CR–I–ST–2 2.21 ~1.0 × 10-1 0.347 0.742 0.61 0.09 0.392
FP–32 2.24 ~1.0 × 10-1 0.375 0.770 0.61 0.09 0.424
FP–13 2.30 ~1.0 × 10-1 0.36 0.74 0.62 0.09 0.418
FP–23 2.35 ~1.0 × 10-1 0.345 0.735 0.61 0.09 0.393
FP–32 2.35 ~1.0 × 10-1 0.375 0.765 0.61 0.09 0.427
FP–42 2.42 ~1.0 × 10-1 0.349 0.719 0.63 0.09 0.412
FP–13 2.51 ~1.0 × 10-1 0.36 0.73 0.63 0.09 0.425
FP–23 2.55 ~1.0 × 10-1 0.347 0.717 0.63 0.09 0.410
FP–32 2.84 ~1.0 × 10-1 0.375 0.750 0.63 0.09 0.439
FP–23 2.90 ~1.0 × 10-1 0.35 0.710 0.64 0.09 0.421
FP–13 2.98 ~1.0 × 10-1 0.365 0.715 0.65 0.09 0.447



The 8th Victor de Mello lecture: role played by viscosity on the undrained behaviour of normally consolidated clays

Martins, Soil. Rocks, São Paulo, 2023 46(2):e2023006123 48

Figure 59. ( )' /' et p  × tε  and ( / )'eu p∆  × tε  curves for CIUCL, stress relaxation and undrained creep tests for different strain rates tε .

regardless of the test strain rate tε . Similarly, points M, D, H 
and K also lie on another 45º sloped straight line and all of them 
are at failure. Such points are assumed to have the same tε  and 
( )/ 'eu p∆  values and, for being at failure, tan tan' 'emob eφ φ=
. Thus, it has been assumed by induction that points X, C, G 
and J, which lie on a generic 45º sloped straight line, also 
have the same tε , ( )/ 'eu p∆  and tan 'emobφ  values.

The validity of the generalized complementary 
principle 1 for normally consolidated San Francisco Bay 
Mud can be checked by observing a summary of the 
Lacerda’s (1976) tests results shown in Table 4, where 

 'emobtanφ  values were computed by applying the equation 

( ) ( ) ( )2 2 / / / /' ' ' ' ' ' 'emob e t e etan t p C s p t pηφ ε = − −  , obtained 
from Equation 56 normalized in relation to 'ep . According to 
the generalized complementary principle 1, for each tε  value 
there will be only one ( )/ 'eu p∆  value and only one  'emobtanφ  
value, regardless of the shear strain rate tε . This is what is 

shown in Table 4, as well as in Figures 59 and 62. Although 
there is some scattering, considering that soil specimens 
were trimmed from natural undisturbed samples, it can be 
concluded that the experimental data are in fair agreement 
with the generalized complementary principle 1.

As already highlighted, by showing that the generalized 
complementary principle 1 holds valid, corollaries 1, 2 and 
3 will be automatically satisfied, as it will be shown next.

Corollary 1, whose statement is repeated below, will 
be firstly shown to be valid.

Corollary 1: CIUCL tests carried out on a normally 
consolidated clay showing homothetic ESPs for any fixed tε  
and a unique curve /  '∆ ×e tu p ε , regardless of tε , will show 
a unique basic curve /   ×' 'b e tt p ε , whatever tε  is.

In order to show that corollary 1 holds valid, it is necessary 
to plot the basic curves /  ' 'b e tt p ε× . This can be done by dividing 
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both sides of Equation 73 by 'ep  to obtain an expression for 
/' 'b et p , which is given by Equation 97 shown below:

( )
( )

( ) ( )
( )

2 22 2/ / 2 // /
/  1

/ / / /

' ' ' ' '' ' ' e e ee e' 'b e ' ' ' ' ' ' 'e e e e
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As ( )/ 'e tp Cη ε=  , thus Equation 97 can be rewritten as:
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Alternatively, /' 'b et p  values can be more simply 
computed by applying Equation 72, dividing its both sides by 

'ep  to obtain an expression for /' 'b et p , given by Equation 99:

( )( )2/ 1  / /' ' ' ' ' ' ' 'b e emob emob e et p tan csc s p t pφ φ= + −  (99)

Based on Lacerda’s (1976) tests results, /' 'b et p  values 
can be computed via Equation 98 and the normalized basic 
curve /  ' 'b e tt p ε×   can be plotted, as presented in Figure 60, 
which clearly shows the validity of corollary 1.

It will be shown next that normally consolidated 
specimens of San Francisco Bay Mud also fulfill corollary 2, 
whose statement is repeated below:

Corollary 2: CIUCL  tests carried out on a normally 
consolidated clay showing homothetic ESPs for any fixed 
tε  and a unique curve '/   ∆ ×e tu p ε , regardless of tε , will 
show a unique normalized basic effective stress path 
( )/ , /' ' ' 'b e b es p t p , whatever tε  is.

In order to plot the normalized basic effective stress 
path for normally consolidated San Francisco Bay Mud, the 
ordered pairs ( / , / )' ' ' 'b e b es p t p  might be obtained.  ( / )' 'b et p  can 
be obtained by Equation 98 or 99. An expression for ( / )' 'b es p  

can be obtained by dividing both sides of Equation 75 by 'ep  
to obtain Equation 100 shown below:
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Replacing / 'ep  by ( )tCη ε  in Equation 100, Equation 
101 is obtained:

( ) ( ) ( )

( )

2
2 2

2
2

 1
'

'

' ' '
t t t' '' ' ' e e eb

' ' ' ' 'e e e
t' ' 'e e e

t s tC C C
p p ps s t

p p p s t t C
p p p

η η η

η

ε ε ε

ε

  
 − + −         = − + +         + −   

     

  



 (101)

Still recalling that / / / / /' ' ' ' ' ' ' 'e e e e es p t p s p u p t p− = − ∆ −  
and that / / 1' ' 'e es p t p− = , thus ( )/ / 1 /' ' ' ' 'e e es p t p u p− = − ∆ . 
Hence, a simple way of determining ( )/' 'b es p  is given by 
Equation 102

1
' 'b b
' ' 'e e e

s tu
p p p

∆
= − +  (102)

By plotting the ordered pairs ( )/ , /' ' ' 'b e b es p t p , one 
can then obtain the normalized basic effective stress path 
(bESPn), which is presented in Figure 61. Except for the 
points corresponding to the beginning of tests FP-13, FP-23, 
FP-32 and FP-42, which are not plotted in Figure 61 for being 
suspected of having been affected by bedding errors, as already 
discussed, all points of the remaining tests can be assumed 
as lying on a single line. This line is the bESPn (normalized 
basic effective stress path) for normally consolidated San 
Francisco Bay Mud. For being associated with the strain 
rate 0tε = , the bESPn shown in Figure 61 only represents 
the mobilization of the frictional part of shear resistance.

Figure 60. Normalized basic curve /  ' 'b e tt p ε×  for normally consolidated specimens of San Francisco Bay Mud [data from Lacerda (1976)].
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An interesting and remarkable aspect which should 
not escape from observation is that the ESPs shown in 
Figures 58 and 61 would represent Roscoe Surfaces sections, 
each one corresponding to a fixed shear strain rate tε , as 
suggested by Leroueil et al. cited by Jamiolkowski et al. (1991).

Finally, it will be shown that normally consolidated 
San Francisco Bay Mud also satisfies corollary 3, whose 
statement is rewritten below.

Corollary 3: CIUCL  tests carried out on a normally 
consolidated clay showing homothetic ESPs for any fixed tε  
and a unique curve /   '∆ ×e tu p ε , regardless of tε , will show 
a unique curve   ' ×emob ttanφ ε , whatever tε  is.

Curve   'emob ttanφ ε×  can be plotted taking ,' 's t  and 
  values corresponding to each tε  value and computing 

 'emobtanφ  for each test, via Equation 56, reproduced below.
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' ' ' '
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s t
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σ σ
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−

   (56)

 'emobtanφ  values can also be determined rewriting Equation 56 
in a normalized way relative to 'ep  as
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Equation 103 can be potentially applied to each and every 
point of all tests presented in this article. However, only 
values of ( )tCη ε  for the shear strain rates tε  equal to 

4 25.5 1 0 % / min., 10 % / min.− −×    and 110 % / min.−  could be 
determined, which provided values of Cη equal to 0.035,   0.06 
and 0.09, respectively. These values of Cη  allowed the curves 
shown in Figure 62 to be drawn.

It can be observed from Figure 62 that, to fully mobilize 
the true angle of friction ( )24'eφ ≅ °  of normally consolidated 
San Francisco Bay Mud in CIUCL  tests type, it is necessary 
a shear strain at failure 3%tfε ≅  corresponding to an axial 
strain at failure 4%afε ≅ .

9. Special undrained tests
9.1 Undrained creep tests

Undrained creep is meant in this article as the 
phenomenon by which a soil specimen is deformed over 
time when subjected to a constant state of total stress under 
undrained conditions.

The undrained creep studied in this article will be 
restricted to those cases where the specimens are of cylindrical 
shape, subjected to an axysimmetric state of stress, with the 
axial (vertical) total stress, denoted by aσ , being the major 
principal stress and the radial (horizontal) total stress, denoted 
by rσ , being the minor principal stress. The study will be 
also restricted to normally consolidated, saturated plastic 
clays with no cementation between grains.

To understand the undrained creep under the light of the 
concepts presented in this article and how it can be related to 

Figure 61. bESPn – normalized basic effective stress path ( )0tε =  for normally consolidated San Francisco Bay Mud [data from 
Lacerda (1976)].
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CIUCL  tests, consider Figure 63. This figure shows several 
CIUCL  ESPs, each one corresponding to a different shear 
strain rate tε  as, for instance, ESP ABCDEFG associated 
with 1t tε ε  . Figure 63 also shows several 45º sloped straight 
lines, which, according to the generalized complementary 
principle 1, are the loci in which tε , ( )/ 'eu p∆  and tan 'emobφ  
values are constant. As an example, for the straight line given 
by YFTL, 4t tε ε= , ( ) ( ) ( ) ( )u u u u∆ = ∆ = ∆ = ∆Y F T L  and 

( ) ( )tan tan' 'emob emobφ φ=Y F  ( ) ( )tan tan' 'emob emobφ φ= =T L .

During the undrained shear phase of a CIUCL test 
starting from point A in Figure 63 with a strain rate of 

3tε , there is an instantaneous jump from point A to point H 
corresponding to the viscous resistance mobilization ( ) H . 
At point H, where 0tε = , shear strains start taking place and, 
consequently, frictional resistance begins to be mobilized 
and pore pressure generated. As soil deforms, the ESP to 
be followed is HIJKLM. According to corollary 3, when 
point M is reached, the shear strain t tfε ε= , corresponding 
to failure, and, therefore, ' 'emob eφ φ= .

Figure 62. Curves    'emob ttanφ ε×  and   'emob tφ ε×  for normally consolidated San Francisco Bay Mud [data from Lacerda (1976)].
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Consider now another specimen from the same normally 
consolidated, saturated clay subjected to the same isotropic 
effective stress 'ep  (point A in Figure 63). Such specimen 
will be subjected to an undrained creep test under ' 'uct t=  
(subscript uc standing for undrained creep) corresponding 
to the ordinate of point H, whose value will be kept constant 
throughout the whole test.

Immediately after applying 'uct , the shear strain at 0t +=  
is still 0tε = , which means that there is no mobilization of 
frictional resistance yet, and hence the entire mobilized shear 
resistance is due to viscosity. Thus, at point H, the shear stress 

( ) ( )45 3,' 'uc e tt pτ ε° = = =  H . At 0t += , even with 0tε = , 
there is mobilization of viscous resistance, which means that 

0tε ≠  at point H.
Turning on the load frame motor at the beginning of the 

undrained shear phase of a conventional CIUCL  test, making 
the shear strain rate to be 3tε , mobilizes instantaneously the 
viscous resistance ( ) ( )3= 

't eC  pη ε H . Conversely, if in an 
undrained creep test a ( )='uct  H  is applied, the specimen 
will start to deform with a shear strain rate 3t tε ε=  . This is 
due to the hypothesis that at any instant and on each and 
every plane given by α  the shear stress ατ  is made up of the 
sum of two components: the frictional resistance component 
φατ  and the viscous resistance component ηατ . As at point H 

the frictional resistance component 0φατ =  (since 0tε = ), 
all the shear resistance must exclusively be assigned to the 
viscous component. Conversely, if the viscous resistance 
component 0ηατ = , which occurs whenever 0tε = , then 
the applied shear stress must entirely be resisted by friction.

Based on the above discussion, in the undrained creep 
test, after applying 'uct  as shown in Figure 63, the specimen 
begins to deform at point H with a shear strain rate 3t tε ε=   
and the ESP to be followed is HNDP. At point N, where 

1t tε ε= , there is some frictional resistance already mobilized. 

Considering that 45'uct τ °=  is kept constant, the increasing 
mobilization of frictional resistance over time causes a decrease 
of equal magnitude in the mobilized viscous resistance, which 
in its turn is ( ) ( )te fη ε=  . As the creep is undrained, 
( ) constanteη = . Therefore, if  decreases over time, so 

does ( )tf ε , making tε  decreases over time. Moreover, since 
tε  increases over time, pore pressure u∆  also increases.

It should be noted that, during undrained creep, the 
effective stress path HNDP crosses several ESPs from 
conventional CIUCL tests of decreasing strain rates, each 
ESP corresponding to a conventional CIUCL test carried 
out with constant.tε =

The process of transference from viscous shear resistance 
to frictional shear resistance continues until the ESP reaches 
point P on the basic ESP (see Figure 63). When point P is 
reached, the undrained creep comes to its end because all 
the viscous resistance will have been transferred to frictional 
resistance.

This process holds valid for each and every plane given 
by α. This happens because the diameter of the Mohr’s circle 
of effective stress does not change during undrained creep. 
Therefore, for a fixed plane α , the shear stress ατ , which 
is the sum of the viscous resistance component ( )ηατ  and 
the frictional resistance component ( )φατ , is kept constant 
throughout the whole process.

The previous paragraph also leads to the following 
discussion: during undrained creep shown in Figure 63 the Mohr’s 
circle of effective stress has a constant diameter equal to 2 'uct . 
At point H one has: ( ) ( ) ( ) ( )3 3,' 'e t t ucp e f tε η ε= = =  H , 

0tε = , 3t tε ε=  , 0u∆ =  and the mobilized frictional resistance 
is equal to zero, whatever the plane may be. Thus, the viscosity 
ellipse and the Mohr’s circle of effective stress coincide and 

Figure 63. Effective stress paths during undrained creep tests. 
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the friction ellipse collapses into the segment of magnitude 
( )' 'a rσ σ− , as shown in Figure 64a.

At point N in Figures 63 and 64, the shear strain 
1t tε ε= . Thus, according to corollary 3, there is some mobilized 

frictional resistance. This makes the mobilized viscous 
resistance ( )N  to be lower than ( )H . Thus, at point N, 

1t tε ε= , and 2 3t t tε ε ε= <   . Therefore, ( ) ( ) ( )2te fη ε= N  
and ( )u∆ =N NH . In brief, as undrained creep goes on, the 
minor axis of the viscosity ellipse decreases, making the 
minor axis of the friction ellipse increases. This is what is 
shown in Figure 64b.

At point D in Figure 63, the shear strain 2t tε ε= . The 
shear strain rate 1 2t t tε ε ε= <   , ( ) ( ) ( ) ( )1te fη ε= <D N   
and the pore pressure ( )u∆ =D DH. At point D the minor axis 
of the viscosity ellipse becomes smaller than it was at point 
N, whereas the minor axis of the friction ellipse at point D 
becomes larger than it was at point N, as shown in Figure 64c.

Finally, at point P in Figure 63, 3t tε ε=  and 0tε = , 
indicating that all viscous resistance has entirely been transferred 
to frictional resistance. Thus, at point P, ( ) 0=P  and the 
viscosity ellipse collapses into the segment of magnitude 
( )' 'a rσ σ− . On the other hand, the friction ellipse becomes 
coincident to the Mohr’s circle of effective stress as shown 

in Figure 64d and pore pressure magnitude is given by PH 
in Figure 63.

If another undrained creep test was carried out with 
a 't  value corresponding to point V in Figure 63, the same 
mechanism of transference from viscous resistance to frictional 
resistance would take place. In this case, however, the ESP 
to be followed in Figure 63 would be VIEY and undrained 
creep would come to an end at point Y on the basic bESP. 
As 'uct  in this test would be higher than 'uct  corresponding to 
the test whose ESP is HNDP, the shear strain tε  at the end of 
undrained creep would be 4t tε ε= > 3tε . The final excess pore 
pressure would be higher than that observed in the previous 
test, being represented by YV in Figure 63.

It is worth observing that, except for a particular but 
important feature to be discussed further, undrained creep 
phenomenon is analogous to isotropic consolidation. During 
isotropic consolidation, the state of total stress is kept 
constant and there is an increase in effective stress equal 
to the dissipation of the excess pore pressure along time. 
During undrained creep, the state of total stress is also kept 
constant and there is an increase in the mobilized frictional 
resistance equal to the decrease in the mobilized viscous 
resistance along time.

Figure 64. Mohr’s circles of effective stress, friction elipses and mobilized states of friction during undrained creep ESP HNDP. (a) 
At point H – no friction mobilized (b) Mobilized state of friction at point N (c) Mobilized state of friction at point D (d) At point P – 
friction fully mobilized.
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The only feature that makes such analogy not be 
“perfect” is explained next. This explanation can be made 
going back to Figure 63 to analyse the undrained creep test 
carried out with a 'uct  value corresponding to the ordinate of 
point Q in Figure 63.

The ESP of an undrained creep test starting at point Q 
in Figure 63 is QRSKTG. Such an ESP crosses several ESPs 
of conventional CIUCL  tests of decreasing strain rates. Each 
ESP corresponds to a conventional CIUCL  test carried out 
with a constant tε . Such ESPs can be viewed as Roscoe’s 
surfaces sections, each one associated with a given tε . On its 
way from the right to the left an undrained creep ESP crosses 
several ESPs of decreasing tε  values, transferring mobilized 
viscous resistance to mobilized frictional resistance until 
reaching point G, whose shear strain is tfε  and whose shear 
strain rate is 1tε . At point G, all the available resistance provided 
by friction, given by 'bft , has already been fully mobilized. 
However, the value of 'uct  applied is now ( )' 'bft t>Q . Thus, 
in order to meet equilibrium conditions after reaching point 
G, the specimen needs to make use of an additional resistance 
corresponding to the difference ( )' 'bft t−Q . This difference is 
supplied by the mobilized viscous resistance given at point 
G by ( ) ( ) ( )1te fη ε= G . However, to keep this viscous 
resistance active so that the equilibrium is satisfied, the 
specimen must continue to deform with a shear strain rate 
equal to 1tε , that is, shear strains will continue to take place 
indefinitely with a rate 1tε . This is the so-called undrained 
creep failure.

The undrained creep mechanism described above could 
be illustrated, without loss of generalization, replacing the axes 

's  and 't  in Figure 63 by the axes /' 'es p  and /' 'et p  and plotting 
the normalized effective stress paths ( / )  ( / )' ' ' 'e es p t p× . Now, 
even without not being able to evaluate tε  and tε  along time, 
one can come to some conclusions of remarkable theoretical 
and practical importance concerning undrained creep. Such 
conclusions encompass the two cases listed below:

(a)  / /' ' ' 'uc e bf et p t p≤

(b)  / /' ' ' 'uc e bf et p t p>

In case (a), if ( ) ( ) /  /' ' ' 'uc e bf et p t p< , there will be no 
failure by creep. Shear strain tε  will approach a definite value 
over time, shear strain rate will approach zero and creep will 
come to an end. The tε  value at which creep will cease can 
be found entering the basic curve /   ' 'b e tt p ε×  with the value 

/ /' ' ' 'b e uc et p t p= , thus determining the tε  value with which 
/' 'uc et p  is associated.

In case (b), if ( ) ( ) /  /' ' ' 'uc e bf et p t p> , there will be failure 
by undrained creep in a finite time period, no matter how 
long it takes. In this case, the higher the ratio ( ) /' 'uc et p , the 
shorter the time period to failure (and the higher the strain 

rate at failure). In this case, failure will occur as soon as 
t tfε ε=  and the strain rate at failure can be predicted.

Before going on with the study of undrained creep, it is 
adequate to recall the excerpt from Taylor (1948, pp. 379-380), 
reproduced at the end of section 4, which reveals his ideas 
about the action of adsorbed water. Most of these ideas 
have inspired the author to develop the model presented in 
this article.

The undrained creep mechanism was also clearly 
depicted by Bjerrum (1973) in an excerpt of his classic 
state-of-the-art report, which is reproduced below to avoid 
loss of fidelity to the original:

“In general, in a natural clay an applied shear stress will be 
carried partly as cohesion in the semi-rigid water-film type 
contact points and partly as friction in contact points with 
mineral contact. However, as demonstrated by Schmertmann 
and Hall (1961), with time the effect of the interparticle creep 
will be a tendency to transfer loads from the cohesive to the 
more rigid and stable frictional contact points with the result 
that the mobilized cohesion decreases and a correspondingly 
greater part of the available friction becomes mobilized. As 
this process will lead to a reduction in shear stress in the 
cohesive contact points, the result is a reduction in the rate 
of failure of contact points, and thus in the rate of creep 
deformation. If the shear stress acting on the clay element 
is smaller than the available friction, the cohesive contact 
points will ultimately be relieved and the creep deformations 
will come to a halt. If the shear stresses exceed the available 
frictional resistance, the difference will have to be carried 
by the cohesive-type contact points. The rate of creep will 
therefore decrease until this condition is reached, and from 
then on it will remain constant.” (Bjerrum, 1973, p. 125).

With the reproduction of the above excerpts, there is no 
doubt that both Taylor (1948) and Bjerrum (1973) captured 
the mechanism the author tried to quantify in this article 
using the concept of viscous resistance, improperly called 
cohesion, as already discussed.

After discussing undrained creep and its consequences 
under the light of the model presented in section 7, one can 
now check its validity when applied to normally consolidated 
samples of San Francisco Bay Mud.

9.2 Undrained creep tests on normally consolidated 
San Francisco Bay Mud specimens

In order to check whether or not the proposed model 
applies to the undrained creep tests carried out on normally 
consolidated specimens of San Francisco Bay Mud, the following 
Lacerda’s (1976) undrained creep tests listed in Table 2 are 
available: CR–I–1, CR–I–2, CR–71–1 and CR–I–ST–2.

According to section 9.1, in order to distinguish among 
the undrained creep tests listed above those that would fail 
from those in which creep would cease, one must know the 

/' 'bf et p  value for normally consolidated San Francisco Bay 



Martins

Martins, Soil. Rocks, São Paulo, 2023 46(2):e2023006123 55

Figure 65. Normalized ESPs corresponding to different tε  values and the normalized basic effective stress path (bESPn).

Mud as well as the  /' 'uc et p  value corresponding to each of 
the undrained creep tests to be analyzed.

Test CR–71–1 was interrupted after about 100 minutes. 
Therefore, the available data are so scarce that they are 
not useful. As test CR–I–2 specimen seemed to be slightly 
overconsolidated (with an 1.3OCR ≅ ), it has been decided 
not to include its data in the analyses presented in section 8. 
However, as test CR–I–2 lasted more than 10000 minutes 
and the specimen failed, it was decided to take it into account 
in this section due to the data scarcity concerning Lacerda’s 
(1976) undrained creep tests. Due to such scarcity, to better 
analyze the model’s ability in predicting soil behaviour during 
undrained creep, two additional tests carried out by Lacerda 
(1976) have been selected. Although these additional tests 
data are not entirely available in Lacerda’s (1976) PhD thesis 
dissertation, the available data can provide valuable information 
to be considered in this section. Such additional tests, denoted 
by S–I–3 and CR–I–5, are both undrained creep tests.

It would also be interesting to analyze the step creep test 
CR–I–ST–2 carried out in seven steps. However, among these 
seven steps, only the last one is of interest for this section. So, 
it was decided to only make a brief comment about the last step 
of test CR–I–ST–2. The undrained creep tests to be analyzed 
will then be those whose data are summarized in Table 5.

In order to identify among the tests listed in Table 5 
those that would fail and those in which creep would cease, 
one must compare their  /' 'uc et p  values with the /' 'bf et p  value 
of normally consolidated San Francisco Bay Mud.

Based on Figures 61 and 63 and on what has been discussed 
in section 9.1, Figure 65 can be drawn showing the normalized 
ESPs corresponding to 45.5 10 % / min.−= ×tε , 210 % / min.−=tε  
and 110 % / min.tε

−=  and the bESPn that corresponds to 0tε = . 
Point M of coordinates ( ) ( )/ , / 0.70,0.36' ' ' 'f e f es p t p = , shown 

in Figure 65, corresponds to failure of CIUCL tests carried out 
with 110 % / min.−=tε  . Point Z coordinates ( )/ , /' ' ' 'bf e bf es p t p  
can easily be computed. Firstly, one determines /' 'bf et p  by 
entering Equation 99 with 24'emobφ ≅ ° and with point M coor-
dinates (0.70, 0.36) to obtain / 0.24' 'bf et p = . Then, by entering 
Equation 102 with / 0.24' 'bf et p =  and / 'eu p∆  corresponding 
to t tfε ε= , one obtains / 0.59' 'bf es p = . Thus, point Z coordi-
nates ( ) ( )/ , / 0.59,0.24=' ' ' 'bf e bf es p t p  correspond to failure 
of CIUCL  tests “carried out” with 0tε = . At points M and 
Z, 24' 'emob eφ φ= = ° and, according to corollary 3, the shear 
strain value ( )tε  at both points is the same, corresponding 
to the shear strain at failure 3%t tfε ε= = . Besides, points 
M and Z lie on the same 45º sloped straight line. This 45º 
sloped straight line, defined by points M and Z, is the locus 
of all points on the plane ( ) ( )/   /' ' ' 'e es p t p×  representing 
failure of San Francisco Bay Mud normally consolidated 
specimens, subjected to CIUCL tests, irrespective of the 
shear strain rate tε  applied during the test.

In order to analyze the tests listed in Table 5 under the 
light of the model presented in section 7, the  /' 'uc et p  value 
of each undrained creep test must be compared with the 

/' 'bf et p  value of 0.24.
For test CR–I–1,  / 0.234' 'uc et p = . In this case, according 

to the model, the undrained creep would cease. In order to 
evaluate the shear strain tε  at which the creep is expected 
to cease, one should enter into the basic curve /   ' 'b e tt p ε×  
in Figure 60 with the value / / 0.234' ' ' 'b e uc et p t p= = , thus 
determining the tε  value with which /' 'uc et p  is associated. 
Following this procedure, an tε  value from 2% to 3% is 
found. The   t tε ε×   plot corresponding to test CR–I–1 is 
shown in Figure 66. Such a test lasted about 20000 minutes, 
during which the shear strain rate tε  decreased, reaching 
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510 % / min.− , after which the test was ended. Such result is 
in agreement with the model predictions.

In test SR–I–3,  / 0.195' 'uc et p = . In this case, since 
 / / 0.24' ' ' 'uc e bf et p t p< = , undrained creep should also cease. 
By entering into the basic curve /   ' 'b e tt p ε×  of Figure 60 with 
the value / / 0.195' ' ' 'b e uc et p t p= = , an 1%tε ≅  is obtained. 

This is the expected value towards which tε  should tend along 
time. The   t tε ε  plot of test SR–I–3 is shown in Figure 66. 
Such a figure shows that tε  decreases all test long. After 
about 10000 minutes, when 51.4  10 % / min.tε

−= ×  and 
0.87 %,  t =  test SR–I–3 was finished. These results are 

also in agreement with the model predictions.

Table 5. Undrained creep tests on normally consolidated San Francisco Bay Mud carried out by Lacerda (1976), analyzed in this article.

Test Stage 'ep  (kPa) 'uct  (kPa) /' 'uc et p
CR–I–1 unique 78.4 18.4 0.234
CR–I–2 unique 78.4 24.5 0.313
SR–I–3 unique 78.4 15.3 0.195
CR–I–5 unique 78.4 27.6 0.351

Figure 66.   t tε ε×   plots for undrained creep tests on normally consolidated San Francisco bay Mud specimens [data from Lacerda (1976)].
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In test CR–I–2,  / 0.313' 'uc et p = . Since  / / 0.24' ' ' 'uc e bf et p t p> = , 
a failure by undrained creep should be expected. By making 
(by feeling) an extrapolation of the ESP corresponding to  

45.5  1 0 % / .t minε −= ×  shown in Figure 65, one can estimate, 
for this tε  value, a / 0.305' 'f et p = , which is very close to 
 / 0.313' 'uc et p =  corresponding to test CR–I–2. Therefore, it 
is expected that failure occurs with a shear strain rate tε  close 
to 45.5 1 0 % / min.−× . This is indeed the case observing the 

  t tε ε×   plot for test CR–I–2 in Figure 66. The shear strain rate 
continuously decreases up to 3.8%tε = , reaching a minimum 
shear strain rate of 41.5 10 % / min.tε

−= × . From then on, along 
14 days, the specimen was deformed during failure, with a shear 
strain rate 4 42 1 0 % / min. 6 10 % / min.tε

− −× ≤ ≤ × , with an 
average value of 43.4 1 0 % / min.−×  In spite of making use of 
an extrapolation of the ESP corresponding to the shear strain 
rate 45.5 1 0 % / min.tε

−= × , the prediction is fairly good and 
illustrates the validity of the model.

A similar analysis can be carried out for test CR–I–5, 
whose value of  / 0.351' 'uc et p = . Since /   /' ' ' 'uc e bf et p t p> , a 
failure by undrained creep is also expected. However, as 
 / 0.351' 'uc et p = , the shear strain rate at failure for test CR–I–5 
is expected to be higher than that observed for test CR–I–2. 
By extrapolating (by feeling) the ESP corresponding to an 

21.0 1 0 % / .t minε −= ×  in Figure 65, one can estimate, for this 
tε  value, a / 0.33' 'f et p ≅ . The value of  / 0.351' 'uc et p =  is only 

6% higher than 0.33. This suggests that for test CR–I–5 one 
can expect a shear strain rate at failure close to 210 % / .min− . 
As shown in Figure 66, the t tε ε×   plot corresponding to test 
CR–I–5 shows a decreasing shear strain rate up to 3.0 %tε = , 
when tε  reaches a minimum value of 21.0  10  % / .min−× . 
From then on, strain rate increases with time, probably due 
to soil structure degradation, but this discussion is beyond 
the scope of this article.

A similar analysis could also be carried out for the 
last stage of the test CR–I–ST–2 (step creep test), for which 

  /  0.365' 'uc et p = . In this case, according to Figure 65, failure 
would take place with a shear strain rate 110  % / min.tε

−= , 
which is ratified by Lacerda’s (1976) data.

In summary, regarding undrained creep tests performed 
on normally consolidated specimens of San Francisco Bay 
Mud, the presented model is able to make the following 
predictions:

a) If  / /' ' ' 'uc e bf et p t p< , undrained creep will cease. The 
tε  value at which undrained creep will cease can be 

found by entering into the basic curve /   ' 'b e tt p ε×  
with the value / /' ' ' 'b e uc et p t p= , thus determining 
the tε  value associated with /' 'uc et p .

b) If  / /' ' ' 'uc e bf et p t p> , there will be failure by undrained 
creep as soon as tε  reaches 3%≅  (which means that 

' 'emob eφ φ= ). In these cases, the shear strain rate at 
failure can be predicted.

Thus, the presented model has shown to be a powerful 
tool to make predictions concerning the behaviour of normally 

consolidated specimens of San Francisco Bay Mud when 
subjected to undrained creep.

9.3 Stress relaxation tests
In this article, undrained stress relaxation means the 

phenomenon in which a soil specimen is kept under a constant 
state of strain while the state of stress is observed over time.

The undrained stress relaxation tests studied in this 
article are restricted to those cases where specimens are 
of cylindrical shape, subjected to an axysimmetric state of 
stress, the axial (vertical) total stress, denoted by aσ , being 
the major principal stress and the radial (horizontal) total 
stress, denoted by rσ , the minor principal stress. The study 
is also restricted to normally consolidated, saturated plastic 
clays with no cementation between grains.

To understand undrained stress relaxation under the light 
of the concepts presented in this article and its connection 
with CIUCL  tests, consider Figure 67.

Suppose that a CIUCL test will be carried out with a 
shear strain rate 3t tε ε=  . The ESP to be followed in Figure 67 
is AHIJKLM. Initially, there will be a “viscosity jump” AH 
and from then on shear strains will become to occur. Failure 
will take place when the ESP reaches point M.

Suppose now that the CIUCL test previously described 
will be repeated, except for a detail: at point I, the load frame 
motor is turned off, starting a stress relaxation stage. From 
then on, what does the model predict?

Since the soil is saturated and the test is undrained, 
0vε = . In addition, from the moment the load frame motor 

is switched off, 0tε = . Thus, during an undrained stress 
relaxation stage shear strain does not change with time.

According to the model, since 0tε = , the viscous 
resistance will vanish. Besides, since tε =  constant, 
according to the generalized complementary principle 
1, u∆  and 'emobφ  are expected to have constant values 
during undrained stress relaxation. As a consequence, the 
ESP to be followed during undrained stress relaxation is 
IQCW, a 45º sloped straight line, as shown in Figure 67. 
Point W is expected to be the end of the stress relaxation 
effective stress path IQCW, since at point W the specimen 
would already have got rid off all viscous resistance and 
would become to resist to the remaining shear stress only 
by friction.

If the load frame motor is turned on during a stress 
relaxation stage, the viscous resistance will instantaneously 
be reactivated and the CIUCL test will continue following 
the ESP associated with the shear strain rate tε  applied. For 
instance: suppose that during the stress relaxation IQCW in 
Figure 67 the load frame motor is turned on again at point 
C, with a shear strain rate 2t tε ε=  . Thus, there will be an 
instantaneous jump, represented by CQ, corresponding to 
the viscous resistance reactivation and the test will continue 
following the effective stress path QRSTV.
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However, if at point T the load frame motor is turned 
off again, another stress relaxation stage will start following 
the effective stress path TFY.

9.4 Stress relaxation tests on normally consolidated 
San Francisco Bay Mud samples

To illustrate what was discussed in the previous section, 
three stress relaxation tests carried out by Lacerda (1976) 
on normally consolidated specimens of San Francisco Bay 
Mud will be presented. The main features of these tests, 
denoted by SR–I–5, SR–I–8 and SR–I–9, are summarized 
in Table 6.

What was presented in section 9.3 for the ESPs can 
be extended, without loss of generality, to the normalized 

ESPs ( ) ( )/   /' ' ' 'e es p t p× . So, it is expected that normalized 
effective stress paths corresponding to stress relaxation stages 
are represented in a ( ) ( )/   /' ' ' 'e es p t p×  plane by 45º sloped 
straight lines with descending direction.

Four stress relaxation stages have been carried out 
in each of the three tests listed in Table 6. The normalized 
ESPs for these stages are shown in Figure 68. These ESPs 
show that stress relaxation is also in agreement with the 
proposed model.

The discussions and experimental results presented 
in this article concerning undrained creep and undrained 
stress relaxation suggest that Taylor’s and Bjerrum’s ideas 
can be gathered in another general principle, which should 
be tested for other soils and which will be called generalized 

Table 6. Summary of data from stress relaxation tests carried out by Lacerda (1976) on normally consolidated specimens of San 
Francisco Bay Mud.

Test Stress relaxation 
stage

/' 'es p  initial 
value

/' 'et p  initial 
value

/' 'es p  final 
value

/' 'et p  final 
value

Stage duration 
(minutes)

SR–I–5  

78.4'ep =  (kPa)

1 1.00 0.278 0.850 0.075 3070
2 0.888 0.463 0.700 0.213 1320
3 0.725 0.388 0.581 0.244 2700
4 0.568 0.356 0.534 0.234 8370

SR–I–8  
78.4'ep =  (kPa)

1 0.781 0.244 0.751 0.151 4530
2 0.830 0.400 0.741 0.201 1660
3 0.819 0.444 0.612 0.237 365
4 0.745 0.425 0.528 0.208 1000

SR–I–9  
314'ep =  (kPa)

1 0.979 0.323 0.831 0.128 1250
2 0.844 0.313 0.775 0.173 1250
3 0.758 0.303 0.712 0.196 1280
4 0.764 0.347 0.671 0.249 100

Figure 67. Effective stress paths for CIUCL  tests with stress relaxation stages.
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complementary principle 2 or Taylor’s and Bjerrum’s law, 
whose statement is written below:

Generalized complementary principle 2 or Taylor’s 
– Bjerrum’s law

A normally consolidated plastic soil subjected to a 
given state of stress, in which the shear stresses are resisted 
partially by frictional resistance and partially by viscous 
resistance, will tend to get rid off the viscous resistance 
over time and will try to resist the remaining shear stresses 
only by friction.

In a clearer and more direct way, the generalized 
complementary principle 2 states that a normally consolidated 
plastic soil under a normalized state of effective stresses 
given by ( / , / )' ' ' 'e es p t p  will always move over time towards 
the normalized basic effective stress path ( /  ,  / )' ' ' 'b e b es p t p , 
which is the Roscoe’s surface for 0tε = .

10. Summary and conclusions

What has been presented and discussed throughout the 
article can be summarized as listed below:

1. Phenomena that do not obey Terzaghi’s principle of 
effective stress (PES) are related to strain rate and 
time effects (such as creep and stress relaxation).

2. The usual approach to deal with phenomena which 
do not obey the PES is to preserve the PES essence 
and develop tools to tackle each of these particular 
phenomena as being outside the PES validity domain. 

The approach followed in this article is different: 
the original PES is extended to encompass strain 
rate and time effects in such a way that these effects 
become natural consequences of the extended PES 
version. Concepts that allow such PES extension are 
presented in some classical texts from the beginning 
of soil mechanics.

3. The word “cohesion” has been used in soil mechanics 
with different meanings, bringing misunderstanding 
and conceptual confusion. Concerning earth natural 
materials, the term “cohesion” should be understood 
as a resistance coming from cementation between 
soil grains. This “cohesion” provides a tensile 
strength under tensile effective stress which makes 
the difference between rocks and soils.

4. The word “cohesion” is also often used to describe 
a sticky earthy material that is soft to the touch 
when moistened. Earth materials that show such 
a feature are also called “cohesive soils”. To avoid 
misunderstanding, these materials would more properly 
be called plastic soils. For the sake of conceptual 
clearness and objectivity, the expression “plastic 
soil” should be used for all soils that present liquid 
and plastic limits.

5. When plastic soils are sheared, there is a component 
of shear resistance that comes from the action 
(distortion) of the highly viscous adsorbed water 
layers surrounding particles in contact. The closer 
the adsorbed water is to the particles surface, the 
higher its viscosity. Thus, it is expected that the 
lower the void ratio, the higher the shear resistance 

Figure 68. Normalized effective stress paths during stress relaxation stages for normally consolidated specimens of San Francisco Bay 
Mud [data from Lacerda (1976)].
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component due to the action of the adsorbed water, 
which is of viscous nature.

6. Hvorslev (1960) showed it is possible to express the 
shear strength of a clay as: ( )   ' 'ff e ff ec e tanτ σ φ= + , 
where ( )ec e  was called “true cohesion”, a function 
of void ratio ( )e , and 'eφ  a constant, called the true 
angle of internal friction. Since the soil tested by 
Hvorslev was a remoulded clay, it could have no 
cementation. Thus, the Hvorslev’s “true cohesion” 
could not have the same nature of Coulomb’s 
“cohesion”. Hvorslev (1960) assumed that the “true 
cohesion” ec  of a saturated clay depends not only on 
void ratio but also on strain rate and clay structure.

7. Since normally consolidated, saturated clays have 
straight line strength envelopes passing through the 
origin in a ×'σ τ  plot, they do not have “cohesion” 
in the sense used by Coulomb but they do have 
plasticity. In other words: normally consolidated 
clays do not have “cohesion” in the sense used by 
Coulomb but do have “true cohesion” in the sense 
used by Hvorslev. Furthermore, when normally 
consolidated specimens of a given clay, with the 
same void ratio, are subjected to undrained shear, 
the higher the strain rates, the higher their strengths. 
These features suggest that Hvorslev’s “true cohesion” 
should more properly be called viscous resistance 
and expressed by the product of the coefficient of 
viscosity and a function of the shear strain rate.

8. The model presented herein assumes that, in plastic 
soils, the shear stress ατ  acting on a plane whose 
normal makes an angle α  with the direction of 1σ  
is expressed, at any instant, as the sum of a viscous 
resistance component ηατ  and a frictional resistance 
component φατ , that is, α φα ηατ τ τ= + .

9. ( ) ( )[ ]1 3 / sin 2 ,= −e f d dtηατ η ε ε α  i.e. the vis-
cous resistance component in a plane given by α  is 
a function of the clay structure and of the product 
of the soil viscosity ( )eη  by a function f  of the 
distortion rate. Therefore, ηατ  is similar to Hvorslev’s 
true cohesion ec  (see conclusion 6).

10. Denoting by 'ασ  the normal effective stress acting 
on the plane whose normal makes an angle  with 
the direction of 1σ , the locus of the ordered pairs 
( ),'α ηασ τ  is the viscosity ellipse, whose centre has 
coordinates ( )1 3 / 2,0' 'σ σ +   and whose major 
and minor axes are respectively ( )1 3' 'σ σ−  and 

( ) ( )1 32  / 2e d dtη ε ε− = .
11.   ' 'mobtanφα α ατ σ φ=  and thus ( ) /' 'mobtan α φα αφ τ σ= . 

The locus of the ordered pairs ( ),'α φασ τ  is the friction 
ellipse, whose centre has coordinates ( )1 3 / 2,0' 'σ σ +  
and whose major and minor axes are respectively 
( )1 3' 'σ σ−  and ( )1 3 2' 'σ σ − −  . (There is a difference 
between  'mobtan αφ  and  'emobtanφ . For a fixed state of 

stress, ( ) /' 'mobtan α φα αφ τ σ=  and  'emobtanφ  is the 
maximum value of  'mobtan αφ , i.e. maximum obliquity).

12. At any instant  'emobtanφ  can be computed by
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2 

' '

'
'emob

' ' ' '
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s t

σ σ
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13. The sum of the viscosity and friction ellipses gives 
the Mohr’s circle of effective stress. The two ellipses 
cannot exist separately since only the Mohr’s circle 
of stress satisfies equilibrium.

14. Since ( )   2e sinηατ η γ α=  , for 45α = °, 'tηατ = . In 
the case of an ideal conventional CIUCL test, as soon 
as the load frame motor is switched on, the viscous 
resistance is fully mobilized instantaneously. Thus, the 
ESP shows an immediate “viscosity jump” along a 45º 
sloped straight line corresponding to a 't = . From 
then on, as there is neither volume change nor strain 
rate change, the viscous resistance remains constant 
throughout the shear phase. But since 't  continues to 
increase as shear strain tε  increases, this means the 
frictional resistance is mobilized throughout the shear 
phase, which leads to two remarkable conclusions: 
frictional resistance mobilization is associated to 
shear strain development and failure is governed by 
friction, i.e. when the available frictional resistance 
is totally mobilized, failure takes place.

15. Since failure is governed by friction mobilization, failure 
takes place whenever  'emobtanφ  reaches its maximum 
available value, which is  'etanφ . Geometrically, this 
means that failure takes place when the friction 
ellipse touches the 'eφ  sloped straight line passing 
through the origin.

16. To compute the undrained shear strength of a plastic 
soil, the viscous and frictional resistance components 
must be summed up. As the viscous resistance 
component depends on the shear strain rate, the 
greater the shear strain rate, the higher the viscous 
resistance component and, therefore, the higher the 
undrained strength.

17. CIUCL test results have been showing that the viscous 
resistance   is not a linear function of γ . Thus, it 
should be rewritten as ( ) ( ) e fη γ=  , where f  is 
a non-linear function of γ . On the other hand, for 
normally consolidated, saturated clays,   is a linear 
function of the isotropic consolidation stress  'ep , i.e. 
( ) ( ) ( )  'ee f C pηη γ γ=  .

18. In section 7.1 ten hypotheses are listed as the basis 
for the development of a behavioural model for 
normally consolidated, saturated clays. Part of these 
hypotheses comes from experimental evidence and 
part is working hypotheses of theoretical nature. 
In section 7.2 it was added another hypothesis that 
came from experimental evidence, which is: during 
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the undrained shear phase of CIUCL tests starting 
from the same 'ep , the pore-pressure u∆  is the same 
regardless of the shear strain rate tε . The set of 
these eleven hypotheses lead to the complementary 
principle 1 which states that points of intersection 
between a given 45º sloped straight line and ESPs 
starting from the same 'ep  and corresponding to 
different shear strain rates tε  have the same tε , u∆  
and 'emobφ .

19. ( ),' 's t  are the coordinates of a point on the ESP of 
a CIUCL test carried out under a given 'ep  and with 
an 0tε ≠ , whereas ( ),' 'b bs t  are the coordinates of a 
point on the ESP of a idealized CIUCL test carried 
out under the same 'ep  but with 0tε = . Obviously, 
it is not possible to carry out a CIUCL test with 

0tε = , whose results would be free from the viscous 
resistance component. However, based on the 
complementary principle 1, it is possible to derive 
expressions relating 'bs  to 's  and 'bt  to 't , provided 
they correspond to the same tε . Then, for this fixed 

'ep , one can plot the basic curves   tu ε∆ × ,    'b tt ε×  and 
the basic effective stress path ( ),' 'b bs t , which are all 
free from the viscous resistance component.

20. The  ' tt ε×  curves and the ESPs of CIUCL tests carried 
out with a fixed tε  but under different values of 
isotropic consolidation stress 'ep  on a given normally 
consolidated clay are similar. Thus, for a given tε , 
there is a unique ( )/  ' 'e tt p ε×  curve and a unique ESP 
on the plane ( )/ )  ( /' ' ' 'e es p t p× . Although limited, the 
experimental evidence presented by Lacerda’s (1976) 
test results show that the   tu ε∆ ×  curves obtained from 
CIUCL tests carried out under different values of 

'ep  are similar, regardless of the tε  value. Thus, the 
( )/  'e tu p ε∆ ×  plot can be represented by a unique 
curve regardless of the tε  value. This means that the 
complementary principle 1 can be generalized to all 

'ep  values. Thus, it was renamed as the generalized 
complementary principle 1: During undrained 
shear of CIUCL  tests carried out on normally 
consolidated specimens of a given clay, points on 
the plane ( ) ( )/   /' ' ' 'e es p t p×  corresponding to the 
intersections of any given 45º sloped straight line 
and the several ESPs, each one associated with a 
different tε  value, will show the same values of tε , 
( )/ 'eu p∆ , and tan 'emobφ , whatever the shear strain 
rate tε  may be.

21. The generalized complementary principle 1 leads to 
the three corollaries below:
Corollary 1: CIUCL tests carried out on a normally 
consolidated clay showing homothetic ESPs for any 
fixed tε  and a unique curve /  'e tu p ε∆ × , regardless 
of tε , will show a unique basic curve /   ' 'b e tt p ε× , 
whatever tε  is.
Corollary 2: CIUCL tests carried out on a normally 
consolidated clay showing homothetic ESPs for any 

fixed tε  and a unique curve /  'e tu p ε∆ × , regardless 
of tε , will show a unique normalized basic effective 
stress path ( )/ , /' ' ' 'b e b es p t p , whatever tε  is.
Corollary 3: CIUCL tests carried out on a normally 
consolidated clay showing homothetic ESPs for any 
fixed tε  and a unique curve /   'e tu p ε∆ × , regardless of tε , 
will show a unique curve    'emob ttanφ ε× , whatever tε  is.

22. The results from CIUCL  tests carried out on 
normally consolidated specimens of San Francisco 
Bay Mud are in fair agreement with the generalized 
complementary principle 1 (see Table 4) as well as 
with corollaries 1, 2 and 3. Although there is some 
scattering, considering that soil specimens were 
trimmed from natural undisturbed samples, it can 
be concluded that the experimental data follow the 
proposed model.

23. During undrained creep of a normally consolidated 
specimen compressed to 'ep , / / constant' ' ' 'e uc et p t p= = , 
where 'uct  corresponds to half of the deviator stress 
applied. As time goes by, shear strain increases, 
mobilizing frictional resistance and demobilizing 
viscous resistance, which makes the strain rate 
decreases over time. During the undrained creep 
process, the ESP crosses successive normalized 
ESPs of CIUCL tests corresponding to decreasing 

tε  values (see Figures 63 and 65). Each of these 
normalized ESPs of CIUCL tests can be seen as a 
Roscoe’s surface associated with a constant tε , and 
the normalized basic effective stress path (bESPn) 
can be viewed as the Roscoe’s surface corresponding 
to 0tε = .
Recalling that /' 'bf et p  corresponds to the failure 
condition for 0tε = , two cases may occur:

 (a) / /' ' ' 'uc e bf et p t p≤

 (b)  / /' ' ' 'uc e bf et p t p>
In case (a), there will be no failure by undrained 
creep. Shear strain tε  will approach a definite value 
over time, shear strain rate will approach zero and 
creep will come to an end, at the normalized basic 
effective stress path (bESPn).
In case (b), there will be failure by undrained creep 
in a finite time, no matter how long it takes. In this 
case, the higher the ratio ( ) /' 'uc et p , the shorter the 
time to failure and the higher the strain rate at failure.
For normally consolidated San Francisco Bay Mud, 

/ 0.24' 'bf et p = . Since for tests CR–I–1 and SR–I–3 
the /' 'uc et p  values were respectively 0.234 and 0.195, 
both tests belong to case (a) and, hence, there would 
be no undrained creep failure. This is suggested by the 
results obtained from both tests shown in Figure 66. 
On the other hand, since for tests CR–I–2 and CR–I–5 
the /' 'uc et p  values were respectively 0.313 and 0.351, 
both tests belong to case (b) and, thereby, there was 
failure by creep, as shown in Figure 66.
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Although it has been applied to a few tests, the 
presented model has shown to be a powerful tool 
to make predictions concerning the behaviour of 
normally consolidated specimens of San Francisco 
Bay Mud when subjected to undrained creep.

24. During an undrained stress relaxation stage, 
0vε = , 0tε =  and thus tε = constant. According to the 

presented model, since 0tε = , the viscous resistance 
must vanish. Since tε = constant, according to the 
generalized complementary principle 1, u∆  and 

'emobφ  are expected to keep constant values during 
undrained stress relaxation. Moreover, since the 
viscous resistance is demobilized (due to 0tε = ) and 
the mobilized frictional resistance remains constant 
(due to constanttε = ), the deviator stress decreases. 
As a consequence, the ESP to be followed during 
the undrained stress relaxation is a downward 45º 
sloped straight line towards the bESPn, which would 
correspond to Roscoe’s surface for 0tε = . When 
the ESP touches the bESPn, the shear stress is free 
from its viscous component, the stress relaxation 
ceases and the remaining shear stress is exclusively 
of frictional nature.
The ESPs of the undrained stress relaxation stages 
carried out by Lacerda (1976), during CIUCL tests 
on normally consolidated specimens of San Francisco 
Bay Mud, show that undrained stress relaxation is also 
in agreement with the proposed model (see Figure 68).

25. The discussion and experimental results presented 
in this article concerning undrained creep and 
undrained stress relaxation suggest that Taylor’s 
and Bjerrum’s ideas can be gathered into another 
general principle (which deserves a deeper study) 
called generalized complementary principle 2 or 
Taylor’s and Bjerrum’s law, whose formal statement 
is presented in section 9.4.

 In a more direct way, the generalized complementary 
principle 2 states that a normally consolidated plastic 
soil under a normalized state of effective stresses 
given by ( / , / )' ' ' 'e es p t p  will always move over 
time towards the normalized basic effective stress 
path ( /  ,  / )' ' ' 'b e b es p t p , which would be the Roscoe’s 
surface for 0tε = .
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List of symbols

bESP Basic effective stress path
bESPn Normalized basic effective stress path
'c  Cohesion
ec  Hvorslev’s true cohesion

e Void ratio
0h  Initial height of a triaxial specimen

0r  Initial radius of triaxial specimen
'fq  Deviator stress at failure
'ep  Isotropic effective stress
'fp  Octahedral stress at failure

s  ( ) / 2v hσ σ+

's  ( ) / 2' 'v hσ σ+
'bs  Value of 's  when 0tε =

t  ( ) / 2v hσ σ−  or time
't  ( ) / 2' 'v hσ σ−
'bt  Value of 't  when 0tε =

'bft  Value of 'bt  at failure
'uct  Value of 't  during undrained creep

u Pore pressure
v Specific volume ( 1 )v e= + )
w Water content
wL Liquid limit
wP Plastic limit
bESP Basic effective stress path
bESPn Normalized basic effective stress path
Cc Compression index
CIU  Consolidated isotropically undrained triaxial test
CIUCL Consolidated isotropically undrained compression  
 loading triaxial test
CSL Critical state line
Cα Coefficient of secondary consolidation
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ESP Effective stress path
G  Specific gravity
IP Plasticity index

0K  Coefficient of earth pressure at rest
M  Slope of CSL projection on a   ' 'p q×  plane  
 ( /' 'f fM q p= )
PES Principle of effective stress

uS  Undrained shear strength
TSP Total stress path
VICL Virgin isotropic compression line
γ  Distortion ( )a rε ε− )
γ Distortion rate ( / )d dtγ )

aε  Axial (vertical) strain
1ε  Major principal strain
3ε  Minor principal strain
rε  Radial (horizontal) strain
vε  Volumetric strain
tε  Shear strain ( / 2)tε γ= )
tε  Shear strain rate ( / 2)tε γ=  )
aε  Axial (vertical) strain rate ( )/ad dtε
lαε  Longitudinal strain of an element on the vertical  

 plane of a triaxial specimen that makes an angle  
 α  with the direction of 1ε

sαε  Shear strain on the vertical plane associated to the  
 angle α

'φ  Angle of friction
'eφ  Hvorslev’s true angle of internal friction

'mobαφ  ( )1tan / 'φα ατ σ−

'emobφ  ( )1tan /
max

'φα ατ σ−

η  Viscosity of a plastic soil
µ  Newton’s coefficient of viscosity or Bjerrum’s vane  
 test correction factor
σ  Normal total stress

'σ  Normal effective stress
1σ  Major total principal stress
2σ  Intermediate total principal stress
3σ  Minor total principal stress
1'σ  Major effective principal stress
2'σ  Intermediate effective principal stress
3'σ  Minor effective principal stress
aσ  Total axial stress (equal to 1σ  in a CIUCL test)
'eσ  Equivalent stress
vσ  Total vertical stress (equal to 1σ  in a CIUCL test)
rσ  Total radial stress (equal to 2 3σ σ=  in a CIUCL test)
'aσ  Effective axial stress (equal to 1'σ  in a CIUCL test)
'afσ  Effective axial stress at failure
'ffσ  Effective stress on failure plane at failure
'iσ  Intrinsic pressure
'rfσ  Effective radial stress at failure
'tσ  Tensile effective stress
'vσ  Effective vertical stress (equal to 1'σ  in a CIUCL test)

'rσ  Effective radial stress (equal to 2 3' 'σ σ=  in a CIUCL 
 test)

'ασ  Effective stress on a plane whose normal makes an  
 angle α  with the direction of 1σ
τ  Shear stress

ffτ  Shear stress on failure plane at failure
ατ  Shear stress on a plane whose normal makes an  

 angle α  with the direction of 1σ
ηατ  Viscous component of ατ
φατ  Frictional component of ατ
u∆  Excess pore pressure

 Viscous resistance on a plane whose normal makes  
 45º with the direction of 1σ
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