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“The important thing in science is not so much to obtain new facts, as to discover new ways of
thinking about them” —Victor de Mello

ABSTRACT: Conventional approaches for the estimation of ultimate capacities of shallow and
deep foundations use limit equilibrium methods and are based only on soil strength parameters apart
from the geometry of the foundation element. Ground/soil being a much more complex material
than strong and very stiff metal, such as steel, for which the original theories have been developed,
requires the consideration of stiffness as well as strength parameters for the estimation of ultimate
loads. The paper summarises approaches for the estimation of carrying capacity of foundations on or
in ground based on (i) strength as originally proposed by Terzaghi and subsequent developments in
the same genre, (ii) strength and stiffness following Gibson, Vesic, etc., (iii) stiffness alone
considering leaning instability as a failure mode, and (iv) in-situ test parameters, such as SPT N and
CPT g.. The results for bearing capacity of shallow foundations, ultimate axial and lateral capacities
of piles, and leaning instability of tall structures, show dependence on the stiffness of the ground
apart from its strength. The contributions of the relative stiffness of the ground on the ultimate
bearing stresses, capacities or loads are quantified.

1. INTRODUCTION

All Civil Engineering structures need to be founded on or in the ground. Their basic design involves
consideration of both stability and serviceability in the form of estimation of ultimate, safe and
allowable bearing capacities of foundations. Terzaghi’s theory for the ultimate bearing capacity of
shallow foundations, which is based on Prandtl’s theory originally developed for punching of metals,
has been extensively developed and modified in current geotechnical practice. This theory has three
fundamental assumptions which model the problem in a very simplistic manner and far from the real
response of the ground due to the loads from the structure.

The system consists of (i) the superstructure that is above the ground and (ii) the ground
below with a structural element termed as foundation that transfers the load from the superstructure
to the ground in a suitable and permissible manner. In all our analyses, the effect of the structure,
particularly its aspect ratio, i.e., height to width, which has a major bearing on the performance of
the structure, is often neglected.

The second most important aspect is that Prandtl’s theory is based on rigid-plastic stress—
strain response which is fairly true for strong and stiff material, such as steel, but most inappropriate
for ground which is weak, soft and highly compressible. Rigid-plastic behaviour implies infinitely
small strain or deformation before failure; however, soils typically attain peak strength at strains of
the order of 5 to 20%.

The estimation of bearing capacity of foundations is one of the foundations of geotechnical
engineering. The classic work of Terzaghi (1943), based on Prandtl’s solution for metals, is the



starting point for this topic. The initial approaches for the study of soil as an engineering material
had to rely profusely on the studies of other engineering materials, especially of metals. The
stiffness of these engineering materials is so high that strains mobilized at or near failure are small
enough to be ignored. Thus, rigid plasticity theory, which neglects deformations or strains, is
appropriate to study the states of failure only in such materials. Hence, the failure state is examined
considering only the equations of equilibrium and the failure or yield criterion.

2. BEARING CAPACITY OF SHALLOW FOUNDATIONS (Based on Soil Strength Alone)

Prandtl’s theory (Fig. 1), originally developed for metals with compressive and tensile strengths of
nearly the same magnitude, i.e., with friction angle equal to zero, is the starting point for the
estimation of bearing capacity of shallow foundations. Terzaghi (1943) modified the same and
proposed his famous theory for a strip footing embedded in a cohesive—frictional soil (Fig. 2). The
slip mechanism consists of an active rigid-elastic wedge defined by the angle of shearing resistance
¢, a fan region of continuous plastic deformation (distortiontrotation), and passive wedges defined
by the angle (7/4—¢/2), both with respect to the horizontal. Prandtl’s solution modified for c—¢ soils
with the active wedge defined by (7/4+¢@/2), instead of ¢, is adopted as the basis for the estimation of
ultimate bearing capacity g, of shallow foundations, as

4, =cN.s.+qN,s, +0.5yBN s, (1)

where N., N, and N, are bearing capacity factors while s., s, and s, are shape factors. N, and
N, increase significantly with ¢ leading to extremely high bearing capacities. It was soon realized
that real soils do not fail only in ‘general shear failure’ and a new failure mode, termed ‘local shear
failure’, was identified as a possible alternative. The ultimate bearing capacity of footings based on
local shear failure is estimated empirically using Eq. (1) but with ¢ and tan¢ reduced to two-thirds
their corresponding values (Terzaghi and Peck 1967). Vesic (1973) extended this concept and
identified a third failure mode, namely ‘punching shear failure’, occurring in loose soils at shallow
depths and at depth in case of dense soils. Fig. 3 classifies the three failure modes in terms of both
the relative density of sand and the relative depth of foundation.
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Fig. 1 Bearing capacity failure in clay Fig. 2 General shear failure mechanism in c¢—¢ soil
(¢« = 0) (Prandtl’s theory) (Terzaghi 1943; adapted from Das 2011)
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Fig. 3 Modes of failure of shallow foundations in sand (Vesic 1973; adapted from Salgado 2008)

3. CAVITY EXPANSION THEORY (Based on Strength and Compressibility of Soil)

Gibson and Anderson (1961) presented a plasticity solution for the limit pressure p; for the
expansion of a cylindrical cavity in undrained soft soil. Menard (1957) obtained the limit pressure of

a cylindrical cavity in cohesive soil (¢, = 0) in the form of an expression very similar to that for the
bearing capacity of a footing as

p,=c,N. +o, (2)

where N, = 1+In(G/c,), G and ¢, are the shear modulus and the undrained strength of soft soil,
respectively, and oy, is the total horizontal stress in the ground. The factor N.", which for the first
time incorporates the relative stiffness of the ground with respect to its strength, increases with the
rigidity index I = G/c, (Fig. 4). Thus, the limit cavity pressure depends on the shear stiffness apart
from the undrained strength of the soil. Similar expressions have been derived by Vesic (1972) for
estimating the limit pressure for the expansion of a cylindrical cavity in c—¢ soil as

p, =cF,+q'F, 3)

. sin¢/(1+sin¢)
F, =(1+sing)(1, sec ) 4
F, :(Fq —1)c0t¢ ®))

;o G/(c+4q'tang)
" 1+(G/(c+q’tan¢5))gj’ sec ¢

(6)



where F.and F,are cylindrical cavity expansion factors for cohesion and surcharge, respectively, /.-
is the reduced rigidity index, ¢g'is the isotropic effective stress in the soil mass, and &,” is the average
volumetric strain in the plastic zone around the cylindrical cavity.

Figure 5 depicts the variation of Ry, the ratio of the limit cavity pressure of compressible
ground to that of incompressible ground (G—), with the normalized stiffness G/yD and the angle
of shearing resistance ¢, for /= 0.3% and ¢/yD = 0.5, where D is the depth of the footing below the
ground surface. It is observed that R, increases significantly at low values of G/yD for ¢ values
ranging from 20° to 45° but is nearly independent of ¢ for a given G/yD. Fig. 6 shows that the effect
of ¢/yD on R, is remarkable for values of G/yD less than 15 at &/ = 0.3% and ¢ = 30°. Fig. 7
illustrates the variation of R, with the reduced rigidity index 7, and the angle of shear resistance ¢
for &/ = 0.3% and ¢/yD = 0.5. The values of R, increase with /- for a given ¢ value and increase with
¢ for a given value of /.
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4. BEARING CAPACITY OF SHALLOW FOUNDATIONS IN COMPRESSIBLE
GROUND (Based on Cavity Expansion Theory)

Vesic (1973) proposed a general expression for the ultimate bearing capacity of shallow foundations
accounting for the compressibility of the ground/soil as

q, =cN,F,F,F, +qN,F, FF, +0.5yBN F F,F (7)

cs™ oed” e q= gs vy ysT yd” ye
where Fe, Fye, Fy are compressibility factors, Fe, Fys, F)s are shape factors, and Fey, Fyq, Fya are
depth factors. The soil compressibility factors were derived by Vesic (1973) by analogy to the

expansion of cavities. Fe., Fye, and F;.are obtained in terms of the rigidity index /. of the soil at a
depth of approximately B/2 measured from the bottom of the foundation, as

G
l,=———— (8)
c+q'tang

where ¢’ is the effective overburden pressure at a depth of D + B/2 below the ground surface. The
critical rigidity index /.« for rigid-plastic condition is expressed as

L= O.S{exp [(3.3—0.45 %j cot(45—§ﬂ} 9)

The compressibility factors, Fe., Fye, and F. are given as follows

(1) FOr 1r< ]r(cr)

F,.=F,=exp {(—44 + O.6§Jtan P+ [(3'07 sing)(log2/, )}} (10)

1+sing
(a) For frictionless soils (¢ = 0°)

F, =0.32+0.12§+0.610g[r (11)

(b) For cohesive—frictional soils (¢ > 0°)

1-F,
Fo=F, - - (12)
N, tang

(2) For 1> Lrer), Fee = Fye = Fye = 1 and correspond to rigid-plastic (general shear failure)

Equation (7) is normalized with yB as



4, :(LJNCF F Fﬁ(gjw F,F, +05N,F,F,F, (13)

cs”ed” ¢ q” gs” qd” g y= st yd” ye
yB \yB

The ratio of the ultimate bearing capacity of the footing in compressible ground to that in
incompressible ground, ¢./qu, is determined for B/L = 0 (strip), 0.2, 0.5, and 1 (square); D/B = 0.5, 1,
1.5, 2, 2.5 and 3; and ¢/yB = 0, 0.25, 0.5, 0.75 and 1. The values of the rigidity index /. are varied
from 1 to 500. It is observed that the bearing capacity ratio g./q.. increases with 7. for a given ¢ at
B/L =0, c/yB=0and D/B =1 (Fig. 8). The limiting value of /. beyond which g./q. remains constant
at one, is equal to 55 for ¢ =20° and 300 for ¢=35°. General shear failure is expected for /. values
that are greater than these limiting values.
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Fig. 8 Variation of q. /q.- with I, and ¢ for
B/L=0,c/yB=0and D/B=1

Figures 9, 10 and 11 show the variations of ¢q./q.. with 1. and ¢/yB for B/L = 0, D/B =1 and
¢ = 20°, 30° and 45°, respectively. The ratio q./q.-1is very small (of the order of 0.1 or less) for
highly compressible soils, and increases gradually with /,till it attains a value of 1 corresponding to
general shear failure. The limiting value of /.is found to be independent of ¢/yB for a given value of
¢. Furthermore, q./q.-1s independent of ¢/yB for ¢ = 45°. Similarly, the bearing capacity ratio qu/qur
is not very sensitive to the normalized depth of embedment of the footing D/B, especially at higher
values of 7, (Fig. 12).

The limiting value of /, increases with the angle of shearing resistance ¢, as shown in Fig. 13,
for B/IL =1, D/B =1 and c/yB = 0.5. The limiting value of /,is 30 for ¢=20° and increases to 500
for ¢ =45°. The ratio q./qu-is very sensitive to ¢ and decreases from about 0.6 for ¢ = 20° to about
0.1 for ¢ =45° at .= 10. Fig. 13 thus highlights the significant effect of soil stiffness on the ultimate
bearing capacity of shallow foundations.

The variations of the bearing capacity ratio ¢./q.- with I, for strip, square and rectangular
footings are shown in Fig. 14. The limiting value of /. deceases from about 150 for B/L = 0 (strip) to
70 for B/L =1 (square), for ¢=30°, D/B =1 and c¢/yB = 0.5. Similar variation of g./q.- with I, for
different B/L ratios can be observed in Fig. 15 for ¢ = 45°. While the trend in the variation of q./qu-
with /. for ¢ = 45° is similar to that for ¢ = 30°; however, the curves for ¢ = 45° do not indicate any
limiting values of /.. The difference in the values of g./q.-as B/L increases from 0 (strip) to 1 (square)
is equal to 0.45 for 7,= 500 but is less than 0.05 for 7,< 10.
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Fig. 11 Variation of ¢./q.- with I, and ¢/yB for Fig. 12 Variation of ¢./q.- with I and D/B for
B/L=0, ¢=45°and D/B =1 B/L=0, ¢=30° and ¢/yB = 0.5
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5. ULTIMATE AXIAL POINT CAPACITY OF PILE FOUNDATIONS (Based on Cavity
Expansion Theory)

Vesic (1977) proposed a method for estimating the pile point bearing resistance based on the theory
of expansion of cavities. The proposed equation for ultimate point or end bearing resistance gpu of
the pile, is

4y =N+ N, (14)
, 1+2K,) ,
o = q (15)
3
. 4 T
chg(lnlw+1)+5+1 (for ¢=0°) (16)

where N." and N, are bearing capacity factors with respect to cohesion and stress, respectively, o’n
is the mean effective stress at the level of the pile base, and Ky is the lateral earth pressure coefficient
at-rest (equal to 1-sing)). According to Vesic’s theory, No = f{I,+) where I, is the reduced rigidity
index of soil defined as

J—
"1+ 1 (7

where 7, is the rigidity index of soil (Eq. (8)) and &/ is the average volumetric strain in the plastic
zone below the pile point.

Figure 16 depicts the variation of gyu/qpur, the ratio of the ultimate point resistance of the pile
in compressible ground to that in incompressible ground, with /,and ¢ for D/B = 10 and c¢/yB = 0.5.
Here, D is the depth of the pile base below the ground surface and B is the pile diameter. It is
observed that gp./qp.- decreases from about 0.25 to 0.1 as ¢ increases from 20° to 50° for /.= 10.
Thus, the effect of soil compressibility on the ultimate point resistance of the pile is greater for soils



with higher angles of shearing resistance. The values of gp./gy.-converge at I = 500 for all ¢ values.
Fig. 17 shows that the variation of gpu/gy.-with I, is independent of D/B in the range 10 to 100 for
@ =30° and c/yB = 0.5. Fig. 18 shows that ¢/yB has no effect on the variation of gpu/gp. with I for
¢=30° and D/B = 10. Fig. 19 illustrates the variation of g,./qp.-with Iand & for ¢/yB = 0.5, ¢ = 30°
and D/B = 10. gpu/qpur increases with increase in /- for a given volumetric strain; however, the value

of the rigidity index decreases with increase in volumetric strain. The limiting value of 7 is 30 for
& = 3% and increases to 80 for &/ = 1%.
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6. ULTIMATE LATERAL CAPACITY OF PILE FOUNDATIONS (Based on Soil
Strength and Stiffness)

Padmavathi et al. (2007) proposed a method to estimate the behaviour of a laterally-loaded vertical
rigid pile in cohesionless soil based on kinematics and non-linear subgrade reaction. A relative
stiffness factor p = ksL/qma (Where k; is the horizontal subgrade modulus of soil, L is the embedded
length of the pile, and gmar is the ultimate lateral soil pressure) is introduced and the normalized
ultimate lateral pile capacity, based on x and L/d (where d is the pile diameter), is predicted. The
ultimate lateral pile capacity is shown to depend on both the stiffness and the ultimate lateral



pressure of the soil unlike in the theories of Broms (1964a, 1964b), Poulos (1971), Prasad and Chari
(1999), and Zhang et al. (2005).

Figure 20 depicts the dependence of the normalized ultimate lateral pile capacity H./K,’ yd’
on u and L/d for the case of no moment at the ground point. /, is the ultimate lateral capacity of the
pile, K, is the Rankine passive earth pressure coefficient, and y is the moist unit weight of soil. It is
observed that the normalized ultimate lateral pile capacity increases with y for a given value of L/d.
The effect of ¢ on the ultimate lateral pile capacity is negligible for very short piles (L/d < 5) but is
significant for longer piles. The normalized ultimate lateral pile capacity increases from about 48 to
60 as u increases from 5 to 2000 for L/d = 24.

Padmavathi et al. (2008) proposed a similar theory to estimate the behaviour of a laterally-
loaded vertical rigid pile in cohesive soil. The variation of the normalized ultimate lateral pile
capacity H,/c.d’ with y and L/d for no moment at the ground point is shown in Fig. 21. Once again,
the dependence of the ultimate lateral pile capacity on the relative stiffness factor x can be clearly

observed. The normalized ultimate lateral pile capacity increases from about 39 to 67 as u increases
from 10 to 10,000 for L/d = 20.
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Fig. 20 H./K,’yd’® vs. L/d — effect of u Fig. 21 H./cud’ vs. L/d — effect of u
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7. ULTIMATE CAPACITY OF TALL STRUCTURES ON GROUND (Based on Soil
Stiffness Alone: Leaning Instability)

Another of Terzaghi’s simplification has been the neglect of the influence of the structure on its
stability. While the stability of the entire structure founded on or in the ground should have been
considered, only the stability of the foundation was considered as described in the previous sections.
Hambly (1985, 1990), Cheney et al. (1991), Lancelotta (1993) and Potts (2003) quantify the effect
of the height of the structure on its stability as somewhat akin to that of buckling of long columns.
Incidentally, the buckling of long slender columns is controlled by the flexural stiffness of the
structure and not by the strength of the material. Fig. 22 shows a schematic of the famous Leaning
Tower of Pisa while Fig. 23 shows a simple leaning instability model that consists of a tall structure
of weight I resting on homogeneous ground characterized by the coefficient of subgrade reaction £;.
The center of gravity of the structure is at height 4 above the ground surface. The pressure under the
foundation is p while the settlement is w.
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Fig. 22 Schematic of Leaning Tower of Pisa Fig. 23 Leaning instability model
(after Potts 2003)

If the structure leans by an angle 46 due to an increase in weight AW, the overturning moment
dM, caused by the eccentricity of the weight about the center of the foundation (Hambly 1985), is

dM, =(W + AW ) hAO (18)

The restoring moment dM,; generated due to the variation in foundation pressure can be
written as

dM, =k I,AO (19)

where /. is the second moment of area of the foundation about the horizontal axis through the
centroid. Equilibrium between the overturning and restoring moments requires that

(W +AW)hAO =k I A0 (20)

At limiting equilibrium (AW = 0), Eq. (20) can be simplified to

e e :1 (21)



where A, is the limiting height, we. is the average settlement, and 7.” = I./4, where A4 is the area of the
foundation. Thus, the structure begins to lean when the product of the height to the center of gravity,
and the average settlement w. (=W/Ak;) equals the square of the radius of gyration 7.. If the structure
is loaded non-centrally, an upper bound limit load W, can be estimated in a similar manner, as

w =l (22)

where /, is the second moment of area of the foundation about the horizontal axis at the edge of the
foundation and 4, is the limiting height of the structure. Equations (21) and (22) demonstrate the
effect of the stiffness of the ground on the leaning instability of tall structures. Lancellotta (1993)
uses the concept of non-linear moment restraint to explain the phenomenon of leaning instability.

To demonstrate the leaning instability mechanism, Potts (2003) models a simple tower of
60 m height and 20 m diameter with an initial tilt of 0.5°, resting on a uniform deposit of clay with
undrained shear strength s, of 80 kPa and shear stiffness G of 10, 100 and 1000 times s.. The stress—
strain behaviour of clay was simulated using the Tresca model. According to conventional theories,
the bearing capacity of the foundation of the tower was found to be the same for the three cases. In
other words, if instability is governed by bearing capacity failure of the foundation, then the
analyses indicate the weight of the tower to be the same for the three cases. However, if the rotation
of the tower is plotted against its weight, the effect of G/s, becomes significant (Fig. 24). The
weights of the tower at failure are 60, 110 and 130 MN for G/s, values of 10, 100 and 1000,
respectively. Failure is abrupt for very stiff soils when compared to that of relatively softer soils.
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Fig. 24 Rotation of tower with increase in its weight (Potts 2003)

8. CAPACITY OF SHALLOW FOUNDATIONS FROM IN-SITU TEST PARAMETERS
(a) Based on Standard Penetration Resistance NV

Apart from the basic soil strength and stiffness parameters often measured in the laboratory,
parameters from in-situ tests have also been used to estimate the allowable bearing pressure of



shallow foundations, especially in sands. Terzaghi and Peck (1967) probably gave the first empirical
chart that relates the net allowable stress to the SPT blow count N and the width of the footing B
(Fig. 25). The net allowable stress corresponds to a settlement w of 25 mm. These pressures were
found to be conservative.
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Fig. 25 Net allowable stress vs. footing width for different N values for settlement of 25 mm
(Terzaghi and Peck 1967; adapted from Kameswara Rao 2011)

Meyerhof (1965) suggested a relationship for the settlement of footings in sand that is
presented in terms of energy-corrected SPT blow counts and normalized quantities, as

!

qp _O-vp -
Lﬁz 0;52 /0| for B< 121k (23)
R min(l+,1-33)N60 Pa
3B
qp _O-l’/p - 2
W 0.229 s B - for B> 1.2Lz (24)
B+0.305L,

Le min(1+D,1.33)N6O P
3B

where zr is the depth measured from the footing base, g5 is the gross unit load at the base of the
footing (including both structural loads and the weight of the backfill and foundation element),

GLP .0 is the maximum past vertical effective stress experienced by the soil at the footing base
f:

level, Ngo is the average SPT blow count at 60% energy ratio over a depth of 1B below the footing



base for square footings and 2B below the footing base for strip footings, Lz is a reference length
(equal to 1 m), and p4 is a reference stress (equal to 100 kPa). In Egs. (23) and (24), the SPT N
values are not corrected for water table or overburden pressure, and the min[1+D/(3B), 1.33] term is
a depth factor that attempts to account for reduced settlement when the footing is embedded in the
soil at a depth equal to D, all else being the same.

Based on the settlement analysis of more than 200 case records of foundations, tanks, and
embankments on sands and gravels, Burland and Burbidge (1985) proposed a more reliable equation
for estimating the settlement of footings, as

2,
qp _7O-vp _ 0.7
w z,=0 B
P01 S 1L, #[—) (25)
Ly P4 Ly
2
1.25£
fo=| 72 (26)
—+0.25
t
| = [1+R3 +R, loggj (27)
1.71
]c = W (28)

where f; is the shape factor, f; is the layer thickness factor and equal to (H/zp)(2 — H/zp) it H < zp

and 1 if H > zp; f; is the time factor, I. is the compressibility index, L is the length of the footing, N
is the average SPT blow count over the depth of influence zp below the footing base, H is the
thickness of the sand layer, ¢ is the time in years, R3 is the ratio of settlement developing over a
period of 3 years to the immediate settlement, and R; is the ratio of settlement developing over a log
cycle of time to the immediate settlement.

The time factor f; captures not only the effect of increasing settlement with time but also the
effect of wind loads on tall structures which can cause some additional settlement. However, in the
absence of precise values for R; and R;, the footing can be designed by neglecting the effect of f:. It

should be noted that N is the energy-corrected, standardized blow count Ngo. The depth of influence
zp below the footing base can be calculated from

Z B 0.79
8

(b) Based on Cone Penetration Resistance ¢.

Schmertmann (1970) and Schmertmann ef al. (1978) proposed a reliable approach for estimation of
settlement of shallow foundations in sand based on the continuous profile of g. values obtained from
static cone penetration tests. The basis for the method is that the strain in the soil mass has some



value at the footing base, peaks at some depth below the footing, and then reduces to zero at the
depth of influence zp. This can be observed through strain influence factor diagrams for strip (L/B >
10) and square/circular footings (L/B = 1) as shown in Fig. 26. The strain influence factor diagram
provides values of the influence factor I as a function of depth zr measured from the footing base.
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Fig. 26 Strain influence factor diagrams (Schmertmann ez al. 1978; adapted from Salgado 2008)

After discretization of the soil profile below the footing into several sub-layers based on the
g. profile, the settlement of the footing can be computed using

’ ]ziAZi
o, _
€, =1-0.5 =0 31)
qb_gv|zf=0
c, :1+O.2log( ! j (32)
O' tR

where C; and C; are correction factors for depth and time, respectively, 0'L|Z o 1 the initial vertical
=

effective stress at the footing base level, I; is the strain influence factor for each sub-layer, 4z; is the
thickness of each sub-layer, E; is the representative deformation modulus of each sub-layer, ¢ is the



time, and ¢z is the reference time (equal to 1 year). The depth of influence zp for rectangular footings
with 1 <L/B <10 can be interpolated using the following equation

z
ﬁ=2+0.222(£—1js4 (33)
B B

The expressions for the influence factor Iy at the footing base, the depth z; below the footing
base at which the influence factor peaks, and the peak influence factor I, are given by

L, :0.1+0.0111(%—1j <02 (34)
b o.5+0.0555[£—1j <1.0 (35)
B B

1,=05+0.1 (36)

where 0;|Z is the initial vertical effective stress at depth z; below the footing base. The influence
1

:zﬁ)

factor 7. at any depth zrbelow the footing base is given by

Zr
I=Iy+=L(I,-1,):forz<z 7)
Zh
b
[ =Zr0TE ; for zp <zr<zp (38)
z zp
Zro~Zp

The deformation modulus E; for each sub-layer is determined based on g. as follows:
Ei = 2.5¢. for young normally consolidated silica sand, E; = 3.5¢. for aged normally consolidated
silica sand, and E; = 6.0q. for overconsolidated silica sand (Schmertmann et al. 1978, Robertson and
Campanella 1989).The methods proposed by Schmertmann ef al. (1978) and Burland and Burbidge
(1985) have been found to estimate footing settlement more reliably than the empirical methods
proposed earlier by Meyerhof (1965) and Terzaghi and Peck (1967).

9. CAPACITY OF PILE FOUNDATIONS FROM IN-SITU TEST PARAMETERS

The ultimate load capacity Q. of a single pile may be expressed as the sum of the ultimate base
resistance Op,.ir and the limit shaft resistance Qsz, as

Qult = Qb,ult + Qs = Qb,ultAb + ZqSL[AS[ (39)
i=1



where g»ui 1s the ultimate unit base resistance, gsz; is the limit unit shaft resistance along the
interface of the pile with soil layer i, 45 is the cross-sectional area of the pile base, 4 is the surface
area of the pile shaft interfacing with soil layer 7, and » is the number of soil layers intersected by the

pile.

(a) Based on Standard Penetration Resistance NV

The general form of the SPT-based equations for estimating g .» and gr; are

.
Pl = N, (40)
Py
M nsiNsi (41)
P4

where ny; and n, are constants that depend on soil type and pile type, and N, and N; are
representative SPT blow counts around the pile base and for soil layer i, respectively. Tables 1 and 2
present the values of n, and ns, respectively, for displacement and non-displacement piles in sand
and clay proposed by various researchers.

Table 1 Values of n; for piles in sand and clay

2)

Soil type Pile type
Displacement Pile Non-Displacement Pile
1) np=4.8 (Aoki and Velloso 1975) 1) ny=0.82 (Lopes and Laprovitera 1988)
2) np=4.0 (Meyerhof 1983) 2) np = 0.60 and gpu/ps < 45 for drilled shafts
Sand (Reese and O’Neill 1989)
3) my = 1.9 for continuous-flight augur piles and
1.2 for drilled shafts (Neely 1991)
1) np, = 0.95 for driven piles (Aoki and Velloso (1) n, = 0.475 for drilled shafts (Aoki and Velloso
Clay 1975, Aoki et al. 1978) 1975, Aoki et al. 1978)
2) np=0.34 (Lopes and Laprovitera 1988)
Table 2 Values of n; for piles in sand and clay
Soil type Pile type
Displacement Pile Non-Displacement Pile
1) n,=0.02 (Thorburn and MacVicar 1971) 1) n,=0.0165 for drilled shafts (Aoki and Velloso
2) ny=0.033 (Aoki and Velloso 1975, Aoki et al. 1975, Aoki et al. 1978)
Sand 1978) 2) n,=0.014 (Lopes and Laprovitera 1988)
3) n, = 0.02 for full-displacement piles and 0.01
for H-piles (Meyerhof 1976, 1983)
1) n, = 0.029 for driven piles (Aoki and Velloso (1) n,=0.0145 for drilled shafts (Aoki and Velloso
Clay 1975, Aoki et al. 1978) 1975, Aoki et al. 1978)

ns = 0.024 (Lopes and Laprovitera 1988)




(b) Based on Cone Penetration Resistance ¢,

The general form of the CPT-based equations for estimating ¢ .i; and gsz; are

Dbt = Cb9ch

9sri = Csici

(42)

(43)

where ¢, and ¢, are constants that depend on soil type and pile type, g is the representative cone
resistance at the pile base level, and ¢.; is the representative cone resistance for soil layer i. Tables 3
and 4 present the values of ¢, and ¢y, respectively, for displacement and non-displacement piles in
sand and clay proposed by various researchers.

Table 3 Values of ¢, for piles in sand and clay

Soil type Pile type
Displacement Pile Non-Displacement Pile
1) ¢»=0.35-0.50 (Chow 1997) 1) ¢, =0.2 for drilled shafts (Franke 1989)
2) ¢p=0.40 (Randolph 2003) 2) ¢ =0.13 £0.02 (Ghionna et al. 1994)
Sand 3) ¢ = 0.20-0.70 for Dr = 30-90% (Lee and (3) c» = 0.23%xexp(-0.0066Dy) (Salgado 2006)
Salgado 1999, Basu et al. 2005)
4) ¢, = 0.52 — 0.4/FR for open-ended steel pipe
piles (Lee et al. 2003)
5) ¢p=1.02 —0.0051Dr (Foye et al. 2009)
Clay 1) ¢»=10.35 for driven piles in London clay and 0.30 for jacked piles in stiff clays (Price and Wardle 1982)
2) ¢ =0.9-1.0 for all piles with full cross-section in soft to lightly overconsolidated clays (Salgado 2008)

Note: IFR = incremental filling ratio, Dr = relative density

Table 4 Values of ¢, for piles in sand and clay

Soil type

Pile type

Sand

Displacement Pile

Non-Displacement Pile

1))

2)

3)

4

5)

¢s = 0.004 for driven piles (Aoki and Velloso 1975,
Aoki et al. 1978)

¢s = 0.008 for open-ended steel pipe piles, 0.012
for precast concrete and closed-ended steel pipe
piles and 0.018 for Franki and timber piles
(Schmertmann 1978)

¢ = qsi/(qe — u) = 0.0034-0.006 for steel and
concrete piles with full cross section (Eslami and
Fellenius 1997)

¢s = 0.004-0.009 for Dz = 0-90% for closed-ended
pipe piles (Lee et al. 2003)

¢; = 0.0015-0.004 for IFR = 01 for open-ended
pipe piles (Lee et al. 2003)

(1) ¢ = 0.002 for drilled shafts (Aoki and
Velloso 1975, Aoki et al. 1978)
(2) ¢;=0.0027 (Lopes and Laprovitera 1988)

Clay

1)
2)

3)

¢s = 0.025 (Thorburn and MacVicar 1971)

¢; = 0.017 for driven piles (Aoki and Velloso 1975,
Aoki et al. 1978)

¢s = 0.021-0.086 for driven piles in stiff clay to
soft and sensitive clay (Eslami and Fellenius 1997)

1) ¢ = 0.0085 for drilled shafts (Aoki and
Velloso 1975, Aoki et al. 1978)
2) ¢;=0.012 (Lopes and Laprovitera 1988)

Note: u = pore pressure at the depth corresponding to the g. value




10. CONCLUDING REMARKS

The paper examines the ultimate limit states of shallow and deep foundations and establishes that
the ultimate capacities of both shallow and deep (pile) foundations are influenced by the relative
stiffness of the ground. This is in stark contrast to conventional approaches which consider only the
strength parameters, ¢ and ¢, apart from foundation dimensions and shape, to determine the ultimate
capacities. Unlike metals and concrete, ground/soil is a unique material which demands a certain
finite deformation in the pre-failure stage. Vesic’s cavity expansion theory provides a good base for
the estimation of ultimate limit loads of shallow and deep foundations in compressible ground.
Consideration of the height of a tall structure and of the whole system of structure, foundation and
ground, leads to leaning instability which is controlled only by the stiffness and not by the strength
of the ground. The paper finally concludes with reliable methods for the estimation of carrying

capacity of shallow and deep foundations based on the two most common in-situ test methods, SPT
and CPT.
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